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Outline

* Short-term and long-term effects of
organic amendments and N fertilization on
soil C, N turnover - plant nutrition
perspective

* Agricultural soils and their role in the global
C and N cycles

* Land use and agricultural management
affecting soil C balances

+ SOM affecting soil properties
* Principles of applied C, N modeling




Short-term effects — nutrient delivery :
C/N ratio is often used as indicator for predicting N mineralization

30 1

20 -
10 -
(m:1 ;]izisom 0O T T 1

-10 150
Rye grass 30

Red clover 15 °

Timothy 40

Time (days)

Gunnarssson and Marstorp (2002)

Mineral fertiliser equivalent

5-10%
Blood meal
Feather meal
Bone meal
Horse manure
Meat meal
Chicken manure
Lucerne pellets
Mink manure
Mussel composi
Cattle slurry
Rapeseed cake
Biogas residue
Sewage sludge
Pig slurry
Vinasse
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Delin etal., 2011




Mineral fertiliser equivalent

60-80%
Blood meal
Feather meal
Bone meal
Horse manure
Meat meal
Chicken manure
Lucerne pellets
Mink manure
Mussel compost
Cattle slurry
Rapeseed cake
Biogas residue
Sewage sludge
Pig slurry
Vinasse !

1% 20% 40% 60% 80 100%

Delin etal., 2011

Impact of organic amendments in a
longer time perspecitve:

Definitions of "humification coefficient’

The proportion of mass (SOM or C) added to soil that is
i) left in soil xx years after application, or
ii) entering a slow pool in a model

Example:
Decomposition of different organicamendments Problems:
y in soil (Kolenbrander, 1974) Definitions are not
o0 consistent between
s 80 ——peat 1 studies due to
£ o differences in time
P e scale, ash
o o straw corrections,
. oo assumed C% etc.




Long-term effects in Swedish long-term experiments

The same amount of carbon is added
every second year in different
amendments +/- mineral N fertilizers.

Ultuna 60°N, started 1956, clay loam, Eutric
Cambisol ,1.5% C initially

15 treatments in 4 randomized blocks, plot size 4
m?2 managed by hand

Mainly spring cereals, maize since 2000

Lanna 58°N, started 1996, clay, Eutric Cambisol,
2% C initially

9 treatments, 4 randomized blocks, plot size about
100 m?

Spring cereals




Grain yield (kg DM ha)

Ultuna SOM experiment:
Average yields in spring cereals
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How do bi-annual additions
of organic amendments
affect crop yields in a short-
and long-term perspective?




Relative yield

Relative yield
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Effects of organic amendments on yields

e Short-term effects are determined by their
nutrient content and decomposition rate

e Long-term effects are more determined by
their effect on SOM

— directly

— indirectly by stimulating plant growth
wich results in higher C input to soil.




Changes in topsoil C over time in the Ultuna frame trial
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Soil C concentrations in selected treatments of the
Ultuna frame trial (2010)
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SOM changes are affecting many
soil processes and properties

Microbial biomass vs. topsoil C Soil biomass increases

100 almost 3 times when
g o0 * doubling soil C%
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§ 50 | 'y SOM for microbes
£ a0 ’Q Treatment M (peat) i .
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20 ¢ increasing soil C.
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SOM changes are accompanied by changes
in soil physical properties

Ultuna Frame trial, topsoil (0-20cm)
16
14 + g 25 m|Original topsoil
sz 71;‘9“*%\*_5_‘_ - § (Reference)
g0 P — 1 3
% 08 D 15 B Original topsoil that
; : ¥=-01279x+1.4901 = g is no longer tilled or
306 fi=0713 2> sampled
0.4 @
02 E 5 4 OOriginal subsoil that
=] has become topsoil
0.0 ES
. . ! ; y i
0o 0s s ?0 o e Reference TreatO  Treat A
Soll C% 5
5 pF-curve, Ultuna Frame Trial Plot elevation differs by up to
4 T Falow 7 cm between treatments

Soil water potential (pF)

w

A
—#— Sewage sludge
\, | Farmyard
manure

NS

N

i

o
4
\

02 o4 "o Kirchmann & Gerzabek, 1999
Soil water content (m%m?) Katterer et al., 2011

o




The effect of amendments and roots on soil Cis obvious
when comparing N fertilized and unfertilized treatments

u+N

H-N

Soil C% (0-20cm)in 2009

N fertilization results in higher root production and
higher soil C stocks

C inputs from organic amendments and crops
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Scaling of C input
Mean annual C input to topsoil Mean annual scaled C input
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Strong evidence that roots contribute relatively more (about 2.3 times
more) to ’'stabilized’ soil carbon than above-ground crop residues
Kéatterer et al., 2011

Results from Lanna exp. (1996-2009) are confirming
the preferential stabilization of root C
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Topsoil rotation 2 (Mg Cha'l)

120

Effect of crop rotation in the fertility experiments
(4 N-levels) in Southern Sweden since 1957

Rotation 1 Rotation 2

Spring barely  Spring barley

Ley Oilseed + Higher yields in rotation 1
Winter wheat ~ Winter wheat (6% in in sugar beets)
Sugar beet Sugar beet

» Higher C stocks in rotation 1

Soil fertility experiments ) )
» Effects of crop rotation are in

average 130 kg C hal year?
100 . )
and are stronger in more C-
| 4 rich soils
60
40 | —
Pl y = 53.077In(x) - 160.42
0 R?=0.9516 -
o 7
0 20 40 60 80 100 120

Topsoil rotation 1 (Mg C ha)

N fertilization has about the same impact on soil C

as crop rotation in the soil fertility experiments

Topsoil C%
-
G«

Differences between high N och no N treatments
correspond to 30 - 200 kg C per year (average over all PK-
level, rotation 2)

11



Impact of N fertilization on soil C sequestration

Soil Fertility Experiments
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About 1 kg C is sequestered for each kg N applied.
The response seems to be independent on fertilizer rate

Soils play a central role in the
global C cycle (Pg C)

800 +4 per year

108 Pg organic - 104 as coal, oil, gas
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Carban Dioxide (ppm)

Nitrous Oxide (ppb)

Methane (ppb)
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Swedish food consumption
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N,O from soils - controling factors

Agricultural soils

Natural ecosystems

Soil water content, SOM, clay, temperature,
N intensity (fertilizer, legumes)

Crop (grass < cereals < legumes)

Soil C balances are governed by
production and decomposition

Production is governed -
by climate, soil

properties and
nutrient availability production ‘1 decomposition

Decomposition is
mainly governed by:

* Quantity and quality
of organic material
(land use and
management

* Soil moisture and
temperature

14
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Soil C affected by land use change
(LUC) and managment
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Strategies for C sequestration in
agricultural soils

» High production

* No bare soil and more perennial vegetation (eg. catch
crops, leys, hedgerows, agroforestry)

» Addition of waste products from e.g. bioenergi
processing (biochar, sludges)

» More recalcitrant plant resdiues (breeding)
» Crops with high C allocation to roots

* Reduced tillage — under certain conditions (heavily
debated)

16



Long-term field studies are
valuable for calibrating C models

litter >y
flora and
fauna SOM R ]
roots T
o
v

C concenctrations increase during

N decomposition, from about 40% in plant
H . material to about 60% in humfied
material.
o) SOM in arable soils contain about 50% C

A few CN-models assume Michaelis-Menten
kinetics — first order kinetics is assumed in
most CN-models

First order approximation Zero order approximation

E':
&

Reaction rate
<

[ S ] Substrate concentration
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Residue decomposition and
formation of SOM

Tid

Dag 0 ‘ Residues from plants and animals

3 months ‘ Sugars etc. have been decomposed ‘ MB ‘ Co,
1 year ‘ Only recalcitrant mat. left ‘ MB . CO,

2 years ‘ ‘ M - CO,

oveas [N co,

30 years l co,

SOM stabilisation mechanisms

Biochemical Recalcitrance
Eating this?? Tastes
It's enough to ) awfulll!
make you sick!
. e . It sticks
Chemical Stabilization like glue!
©
~ Fe™ ;
/ ©-

Physical Protection

Anke Herrmann
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Activity rate

Decomposition rates are governed by
soil femperature and water content
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Decomposition of barley straw in a
field in Sweden - field measurements
and output from a simple C model
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Dynamic modelling of N turnover in soil

- Aoy -

N is usually driven by C since Feekes scale o] 5
C-bounds provide energy to -
the heterotrphic community.
These models are needed for

predicting net N meralization

-

For optimizing crop

production

and 120 - CrOp N demand 25
.. .. . 100 ~ 1

minimizing environmental ol R

impact, such as N leaching =

60 -
i~

and GHG emissions (CO,, o4
N,O) 20 4 perday T 05

kg N per day

days
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Simple dyanmic
model for
estimating N
mineralization

Ex.: soll
with/without
addition of straw

Y || Yy straw

o || oy SOM
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Fig. 5. Mecasured (symbols) and modelled (lines) dynamics of
accumulated COxC evolution and nitrogen mineralisation/im-
mobilisation from the Nintuna scil as incubated at about
20°C (Jansson, 1938). Treatments were: with straw { @; —--)
and without straw (O: — ). See Table | for initial and
parameter values.

Katterer & Andrén, 2001

C and N dynamics
in decomposing
legumes with
C/N=16 in both

C/N is often a good
indicator for N delivery
in a medium-term
perspective
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Several dimensions of "substrate quality”
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Net N mineralisation influenced
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Decomposition rate
increases with
decreasing particle

. 04 1
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From: Ambus P. and Jensen E.S. (2000)
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Net N mineralisation influenced by
spatial distribution

30 ~ Thorough mixing increases
availability of substrate

No mixing — cold- and hotspots

5 4 Control Bundle

Net N mineralisation (mg N kg-1)

Treatment

From: Ambus P. and Jensen E.S. (2000)

Spatial distribution in the soil - plants
and microbes are competing for N

Clover

Distance larger
than 6 mm:

Roots - advantage
Bacteria - disadvantage

From: Jingguo & Bakken (1997)
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Summary
» Short-term effects of organic amendments on yield are
determined by their nutrient content and decomposability

* C/N is often a good indicator for the N fertilizer equivalent
of organic amandments.

* Long-term effects are more determined by their effect on
SOM builtup (humification coefficient)

— directly and

— indirectly, by stimulating plant growth which results
in higher C input to soil

» Roots contribute relatively more to soil C stocks than
corresponding input from above-ground sources

» 1 kg C is sequestered for each kg N applied

Summary cont.

» Soils play a major role in the global C cycle
 Agricultural soils are the major source of N20O emissions
* SOM affects many soil properties

» Decompositon rates depend on substrate quality and
abiotic conditions

* Most dynamic models describe decomposition as a first
order rate process

* The complexity of models needed for describing soil N-
dynamics depends on the time resolution needed and how
general the model should be
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