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Review
Glossary

Direct plant defense: characteristics of a plant, such as thorns, thick cuticle or

toxic secondary metabolites, that negatively affect the physiology or behaviour

of herbivores.

Food web: all connections between species in a community that represent

trophic interactions where one of the interactants consumes the other.

HIPVs (herbivore-induced plant volatiles): volatiles that a plant produces in

response to herbivory. These can either be compounds that a plant does not

biosynthesise unless it is damaged or compounds that are also synthesised by

undamaged plants but in larger amounts by damaged plants. Because the

information content of volatile blends is in the mixture of compounds, it is

important to also consider compounds that are produced by plants but

repressed when plants are attacked.

Indirect plant defense: characteristics of a plant that enhance the effectiveness

of natural enemies of herbivores, such as alternative food for carnivores

(extrafloral nectar, pollen) or HIPVs.

Infochemical: a chemical that, in the natural context, conveys information

between two individuals evoking a behavioural or physiological response in

the receiver that is adaptive to either one or both of the interactants [107].

Infochemical web: all connections between species in a community that
Attacks by herbivores elicit changes in the bouquet of
volatiles released by plants. These herbivore-induced
plant volatiles (HIPVs) have been interpreted as being
indirect defenses. However, given that no studies have
yet investigated whether HIPVs benefit the fitness of a
plant, their defensive function remains to be established.
Moreover, herbivores, pathogens, pollinators and com-
petitors also respond to HIPVs and, in addition, neigh-
bouring plants in native populations also emit volatiles
that provide a background odour. These considerations
enrich the evolutionary context of HIPVs and complicate
predictions about their adaptive value. Molecular
advances in our understanding of HIPV signaling and
biosynthesis is enabling the creation of HIPV-’mute’
and possibly HIPV-’deaf’ plants. As we discuss here, such
plants could be used for unbiased examination of the
fitness value of HIPV emissions under natural conditions.

The function of HIPVs in a multitrophic context
Plants are famous for their ability to produce a diversity of
secondary metabolites [1], some of which are released into
the air after attack or egg deposition by herbivores [2–5].
These herbivore-induced plant volatiles (HIPVs; see Glos-
sary) mainly comprise terpenoids, fatty acid derivatives,
phenyl propanoids and benzenoids [6,7] and can be emitted
either at the site of damage or systemically from unda-
maged parts of affected plants [8]. The blends can be
complex, comprising hundreds of compounds [9], some of
which are not produced by intact or mechanically damaged
plants and others of which are synthesised de novo in
response to herbivore attack [10]. HIPVs can elicit beha-
vioural changes in various community members, from
carnivorous arthropods and parasitic nematodes to insec-
tivorous birds and from conspecific neighbouring plants to
parasitic plants [11–16]. Given that HIPVs can influence
various community members (Figure 1), they can also
influence community dynamics [17–20] and, therefore, food
webs are overlaid with infochemical webs (Figure 2). The
intricacies of these webs can confound simple interpret-
ations of the fitness consequences of HIPVs for plants.

Most studies of the ecological functions of HIPVs
address species interactions at the level of individuals,
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and usually in simple linear agro-ecosystem food chains
that involve one plant, one herbivore and one carnivore.
However, the situation in agricultural and especially
natural ecosystems is more complex. Herbivores are
usually attacked by many different natural enemies and
competition among these can obviate the top-down effects
that are thought to be mediated by HIPVs [21,22]. It has
been shown [23,24] that competition among insect herbi-
vores is more pronounced than was previously thought,
and HIPVs can also mediate such interactions [25–27].
Although HIPVs are thought to be an induced indirect
plant defense, they can also attract herbivorous arthropods
[28,29] or interfere with the attraction of pollinators by
recruiting bodyguards [17,19]. During the 1980s, Peter
Price and colleagues drew attention to carnivores as a
component of the defense strategy of a plant [30], which
was later coined ‘indirect defense’ [31]; the authors argued
that plant–herbivore interactions should be studied in the
context of the tri-trophic interactions in which they are
embedded and that plant fitness should be the currency for
determining whether a trait should be considered a
defense [30]. Three decades later, limited progress has
been made in testing the evolutionary framework that
Price and his colleagues envisioned and, more specifically,
represent interactions where one of the interactants affects the behaviour and/

or physiology of the other.
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Figure 1. Plant damage and HIPVs. A plant that is locally damaged by a herbivore emits induced volatiles systemically, both above- and belowground. The HIPVs can affect

various community members that each exert different selection pressures on the plant.
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the hypothesis that HIPVs function as defenses that
increase plant fitness has not been falsified.

Most studies of the function of HIPVs are laboratory
based and only a few have demonstrated an HIPV-
mediated increase in carnivore attack rates on herbivores
under field conditions [26,32–35]. However, a recent study
showed a correlation between carnivore attack rates in the
laboratory and in the field [35]. Although no studies have
yet rigorously tested the effects of HIPVs on plant fitness, it
is likely that plants benefit from predator attraction, as
predators remove herbivores by consuming them. The first
studies of HIPVs [36,37] were instigated by modelling
studies showing that the extermination of herbivorous
spider-mite populations by a predatory mite could only
be explained by a hypothesised factor that enhanced the
colonisation of spider-mite colonies by the predator beyond
random movements [38]. This factor appeared to consist of
HIPVs [36,37]. To date,>25 predator species are known to
be attracted to HIPVs [6]. That parasitoid activity benefits
plant fitness is less self-evident (but see Ref. [39]) as
parasitoids do not instantaneously kill their herbivorous
host. However, two papers show that parasitoid activities
can also benefit plant fitness [40,41]: these studies used
pre-parasitised larvae and showed that the feeding of
parasitised larvae does not reduce plant reproductive
output in contrast to feeding by unparasitised larvae.
However, because HIPVs and the attraction of parasitoids
to feeding larvae were not examined in these studies, their
relevance to the defensive value of HIPVs remains to be
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elucidated. Moreover, most of the environmental variabil-
ity was removed by growing the plants under controlled
laboratory conditions. Many environmental factors, in-
cluding light intensity, fertilisation and watering regimes,
are known to influence how small differences in leaf
damage are translated into differences in reproductive
output [42], as well as HIPV emissions [43–45]. This
environmental variability in HIPV emissions is likely to
influence whether carnivores respond to HIPV emissions
and locate feeding herbivores, and whether their feeding
behaviour results in a top-down fitness benefit for plants
under natural conditions.

Moreover, the importance of the community context for
the evaluation of the effects on plant fitness makes it
difficult to infer the selective pressures on the plant to
release HIPVs. Here, we address these selection pressures
and develop them in a community ecological context. First,
we consider the different communitymembers that react to
HIPVs and how their responses could alter selective
regimes for emissions. We then review what is known
about the mechanisms responsible for the activation of
HIPVs and consider how these mechanistic details will
eventually enable definitive tests of the fitness con-
sequences of HIPV emissions in the rich community con-
text that occurs in the real world.

Carnivore attraction to HIPVs
Carnivorous arthropods are attracted to HIPVs and
examples include mites as well as insects from five insect



Figure 2. Food web and infochemical web. (a) A hypothetical food web represents trophic interactions (green lines) between members of a community, whereas (b) an

associated hypothetical infochemical web represents the infochemically mediated interactions (blue lines) in a community.
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orders (Hymenoptera, Neuroptera, Diptera, Coleoptera
and Heteroptera) [6]. In some studies, a positive corre-
lation was found between the degree of attraction and the
amount of HIPVs emitted by a plant [46,47]. However,
when different maize (Zea mays) accessions were com-
pared for their ability to attract the parasitoid Cotesia
marginiventris, it was clear that the quality of the HIPV
blend was as important as its quantity. Indeed, not all
HIPV constituents emitted elicit a response in carnivores.
Gas chromatography–electroantennography (GC-EAG)
can be used to reveal which compounds within a blend
of HIPVs elicit a response in the chemoreceptors of the
carnivore and such studies have shown that the com-
pounds that dominate the HIPV blend are not necessarily
the most important components for the carnivore [48–50].
This is not surprising, given that carnivores must evaluate
how reliably the compound predicts the presence of a
feeding herbivore [51].

The observation that the quantity of HIPV is positively
correlated with carnivore attraction implies that there is a
positive selection on plants to increase rates of HIPV
emission. However, these emissions are frequently orders
of magnitude lower than other plant emissions used to
attract insects, such as those emitted from flowers [52].
This suggests that ecological, rather than biosynthetic
costs of emission, set upper boundaries to emission rates
[52,53]. Moreover, it is not clear how to quantitate the
emission rate. Although some studies have shown that
enhancing individual components of HIPV blends
increases predator attraction under field conditions [26],
others suggest that individual HIPV components function
independently. For instance, the predatorymitePhytoseiu-
lus persimilis is not attracted to the homoterpene (3E,7E)-
4,8,12-trimethyl-1,3,7,11-tridecatetraene when it is
offered as a pure compound [37]. However, when this
compound, which is emitted from prey-infested lima bean
plants (Phaseolus lunatus), is added to a blend of com-
pounds emitted from a plant infested by non-prey cater-
pillars, it becomes more attractive to the predatory mite
[54,55]. Thus, to understand the selection pressure exerted
by carnivores on HIPV emission, one needs to know which
combination of compounds is used by the carnivores.

Additional complications come from the observation
that some HIPVs are not attractive to carnivores or can
even be repellent or mask the attractive compounds
[46,56]. When combined with a recent report that herbi-
vore elicitation not only increases the emission of certain
compounds, but can also suppress the release of certain
wound-elicited constituents [9], these observations suggest
that plants have the tools to fine-tune the attractiveness to
carnivores, and could alter the role that certain compounds
have in interactions that the plant has with othermembers
of its community.

Herbivore responses to HIPVs
The behavioural responses of herbivores to HIPVs have
been investigated less intensively than have those of car-
nivores. Some herbivores, such as spider mites [25], aphids
[57] or moths [26], are repelled by HIPVs, whereas others
are attracted, such as beetles [28,29,58], aphids [59] and
moths [60,61]. Thus, the infestation of a plant by a herbi-
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vore can result in differential responses in different com-
munity members; this has been shown with tobacco
(Nicotiana attenuata) plants in their native habitats in
the southwestern USA. Genetically silencing the pro-
duction of fatty-acid derived green leaf volatiles (GLVs),
a major component of the HIPVs of N. attenuata [26],
reduces herbivore loads on these transformed plants when
they are planted into native populations [28,62]. These
results underscore the double-edged sword of HIPV emis-
sions. The net selective consequences for a plant of releas-
ing HIPVs probably depend on the composition of the
herbivorous insect community associated with it as well
as the relative fitness consequences that result from attack
by each of these herbivores [63]. For instance, although
attack of anN. attenuata plant by the mirid bug Tupiocoris
notatus leads to some damage, it also leads to an increased
resistance to caterpillars of the more damaging specialist
herbivore Manduca sexta [64]. Thus, the selection press-
ures exerted by these two herbivore species are quite
different. In an environment where M. sexta is present,
selection is likely to favour the emission of those HIPVs
that attract the bug as its presence is likely to be beneficial
for the plant.

Effects of HIPVs on plant pathogens
Other GLVs, such as C6-aldehydes, have been reported to
interfere with the germination of plant pathogen conidia
[65] and can also protect plants from infection by plant
pathogens [66,67]. Interferingwith thebiosynthesisofGLVs
can affect plant fitness; for example, in glasshouse studies,
antisense-mediated silencing of the hydroperoxide lyase
HPL gene increased the susceptibility of Arabidopsis thali-
ana plants to the fungal necrotrophic pathogen Botrytis
cinerea, whereas overexpression of the gene resulted in
enhanced protection from the fungus. Application of syn-
thetic (Z)-3-hexen-1-ol also interfered with fungal infection
[66]. Therefore, the emission of some HIPVs will be under
positive selection in environments that are rich in plant
pathogens, such as B. cinerea, that might invade wounds
made by herbivores. However, the effects of GLVs on fungal
resistance are not universal, as planting HPL-silenced
N. attenuata plants into their native habitats over three
field seasons revealed no evidence for increased suscepti-
bility to fungal or bacterial attack, even when other plants,
silenced in other pathogen resistance genes, were more
susceptible (I.T. Baldwin, unpublished results, [68]).

Pollinator responses to HIPVs
The responses of pollinators to flower volatiles are well
studied [69] and leaf herbivory can alter the emission of
volatiles by flowers of the same plant [70]. Moreover, much
anecdotal evidence suggests that some predators use
flower volatiles to hide themselves within inflorescences
to predate on flower-visiting insects. However, few studies
have examined the responses of pollinators to HIPVs
[11,17]. If these compounds are indicators of a plant under
herbivore attack and increase the influx of predators, their
emissions should signify a risk of low food availability or
enhanced predator presence to pollinators. Given that
pollinators use plant volatiles to optimise food intake,
HIPVs might interfere with pollinator attraction when
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better quality plants are present [71]. If HIPVs do result in
a reduced attraction of pollinators [19], this implies that
the emission of those HIPVs is under negative selection
pressure during flowering, a possibility that requires more
scrutiny.

Plant responses to HIPVs
The role of HIPVs in eliciting responses from neighbouring
plants, both con-and heterospecifics, has been discussed for
almost four decades and, although evidence from laboratory
and field experiments continues to accumulate that is con-
sistent with the notion that plants respond to the volatile
emissions of their neighbours, the biological significance of
these responses remains unclear [15,72]. Although plants
have the potential to respond, the response distance was
found to be short under field conditions in a study on
interactions betweenplants from two different plant species
(sagebrush Artemisia tridentata and N. attenuata) [73].

How plants perceive the emissions also remains
unknown. HIPVs exposure can prime plant neighbours
to respond faster or more intensely to subsequent herbiv-
ory, and priming can also mediate systemic responses
within a damaged plant [8,74]. However, it is not clear
what signals plants respond to. In laboratory studies with
GLV-silencedN. attenuata plants located upwind of neigh-
bouring wild-type plants, transcriptional responses were
elicited in the downwind wild-type plants [75], suggesting
that, for conspecifics, it is the absence of a volatile signal,
rather than its presence, that provides biologically
relevant information. This study, combined with a recent
report that herbivore elicitation not only increases the
emission of certain compounds, but can also suppress
the release of certain wound-elicited constituents [9],
suggests that researchers should be open minded about
the nature of the signal in a volatile blend.

Exploiting HIPVs for systemically induced responses
within the attacked plant implies that there is a positive
selection pressure to increaseHIPVemissions, but not if the
signal is the absence of a volatile signal, or, in other words,
the ‘sound of silence’. Given that most phytohormone sig-
naling cascades are negatively regulated signaling systems
in which the perception of the phytohormone results in the
removal of repressors, the absence of signals would be
relatively easy to perceive and respond to. Preliminary
evidence from field work with A. tridentata suggests that
the degree of genetic relatedness influences the response of
‘receiver’ conspecifics [76]; when neighbouring plants use
HIPVs to prime the defenses of genetically related neigh-
bours, the inclusive fitness of the HIPV ‘emitter’ can also
increase. However, when the neighbouring plants are not
genetically related, valuable information could be co-opted
by an eavesdropping competitor and plants would be under
strong selection to reduce HIPV emissions. Clearly, the
response of neighbouring plants to HIPV emissions is
another complicating selection pressure that requires more
scrutiny if researchers are to understand more fully the
fitness consequences of HIPV emissions.

Community effects on HIPVs effectiveness
In most laboratory studies of the effects of HIPVs on
community members, the HIPVs are presented to the
insects against an odour-free background (but see Ref.
[77]). However, in nature, the HIPV blend is present
among a multitude of volatiles from other plants, which
can influence the responses of insects to HIPVs [78]. An
interesting observation from a laboratory study was that
HIPVs from Arabidopsis or Brussels sprouts (Brassica
oleracea) plants infested with caterpillars of the diamond-
back moth attracted fewer Diadegma semiclausum para-
sitoid wasps in the presence of isoprene than in its absence
[79]. This effect was already clear at low isoprene concen-
tration and isoprene was also shown to be perceived by the
chemoreceptors of the wasp. Isoprene is one of the abun-
dantly released volatiles from particular plant species,
such as poplar Populus spp., and functions in protection
against certain abiotic stresses [80]. The interference with
parasitoid attraction in the laboratory suggests that
HIPVs are less effective in attracting D. semiclausum
parasitoids in habitats with elevated isoprene levels.

Given the previously mentioned large environmental
influence on the HIPV emission of a plant, when this
variance is embedded in a dynamic background of volatile
organic compounds (VOCs) contributed by other members
of the community, it is clear that special tools will be
required to come to grips with the diversity of selective
pressures that influence HIPV emissions under natural
conditions. Specifically, researchersmust be able tomanip-
ulate the ability of a plant to produce or respond to HIPVs
or, in other words, to produce plants that are HIPV ‘mute’
or ‘deaf’, so that they can understand the fitness con-
sequences of not producing or not responding to (com-
ponents of) these emissions [15]. However, to produce
such ‘deaf’ or ‘mute’ plants, researchers must understand
themechanisms bywhich they are produced and perceived,
as the genes that encode the proteins mediating these
mechanisms provide targets for manipulations such as
post-transcriptional gene silencing or genetic transform-
ation.

Mechanisms underlying the induction of HIPVs
Induced plant responses are mediated by a network of
signal perception and transduction, ranging from the per-
ception of cell damage through changes in plasma trans-
membrane potential and cytosolic Ca2+ concentration,
through protein kinase responses to phytohormone sig-
naling [81–83]. In N. attenuata, in which the relevance
of HIPVs has been firmly established in field experiments
[26], the signaling cascades responsible for the elicitation
of HIPVs are understood in great detail. Moreover, many of
the key regulatory loci in the signaling cascade have been
genetically silenced and the ability of the plant to attract
predators after elicitation has been tested in the field.
When M. sexta larvae attacked N. attenuata, fatty acid-
amino acid conjugates found in the oral secretions (OS) of
the larvae were introduced into plant wounds during
feeding [84]. These conjugates elicited a signal transduc-
tion cascade starting with a suite of mitogen-activated
protein kinases (MAPKs), including a SIPK (salicylic acid
induced protein kinase) and a WIPK (wound induced
protein kinase) [85], both of which activate transcription
factors of the WRKY family [86]. These transcription fac-
tors then orchestrate the induction pattern of three main
171
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phytohormones [i.e. salicylic acid (SA), jasmonic acid (JA)
and ethylene] that are involved in eliciting a suite of
induced plant responses that include HIPV emissions
[87]. Nicotiana attenuata plants transformed to silence
JA [88], SIPK and WIPK [62], or WRKY transcription
factors [86] were unable to release key constituents of
the HIPVs blend and failed to attract predatory Geocoris
pallens when planted into native populations.

The herbivore-induced signal-transduction pathways
are characterised by extensive crosstalk [89], which can
result in interference with HIPVs emission, as shown for
the effect of whitefly Bemisia tabaci infestation on spider-
mite induced lima bean volatile emission [90]. However,
compounds that are under the control of either signal-
transduction pathway can also result together in the
attraction of a carnivore species [91]. For instance, JA
induces most spider-mite inducible volatiles in lima bean
plants [92] and several of these JA-inducible compounds
attract the predatory mite P. persimilis [37]. However, a
major HIPV involved in the attraction of this predator is
methyl salicylate (MeSA), which is not JA inducible in lima
bean [54,55,92].

Genetically manipulated plants in which certain genes
were introduced or silenced have been instrumental in
elucidating mechanisms underlying HIPV-mediated
plant-insect interactions [62,79,85,86,93–95] or in demon-
strating the effects of gene function under field conditions
[88,96].

Natural variation in HIPVs emission
Most research on HIPVs has used cultivated plants, such
as maize, lima bean, tomato (Solanum lycopersicum), cab-
bage (Brassica oleracea) or gerbera daisies (Gerbera jame-
sonii) [6]. Some studies have addressed variation among
accessions. For instance, among maize cultivars, the emis-
sion of HIPVs varied up to a factor of eight, and a similar
variation was recorded for the total amounts emitted by
different wild relatives of maize (i.e. different teosinte
species) [45,97,98]. Also among Gerbera cultivars [99],
apple (Malus domesticus) cultivars [100] and cotton (Gos-
sypium hirsutum) accessions [101], variation in HIPV
emissions has been reported. In addition to quantitative
variation, there is also variation in the composition of the
blend.

These studies show that there is variation in HIPV
emissions among different plant genotypes. The first stu-
dies addressing natural variation in HIPV emissions are
emerging for solanaceous plants, such as Datura wrightii
[102] or N. attenuata [103] and for the brassicaceous plant
Brassica nigra [104]. For instance, accessions obtained
from N. attenuata plants located <1 m apart in a native
population in Utah differed in their HIPV composition.
Variation was recorded for several terpenes and a green
leaf volatile, as well as for total detectable VOCs. In these
experiments, the effect of environmental variation was
minimised so that the variation recorded is probably
genetic variation [103].

Thus, evidence for variation among conspecific plants
exists for cultivated as well as wild plants. To understand
the evolutionary importance of HIPVs, it will be relevant to
expand the studies of natural variation in HIPV emission,
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both in terms of quantity and in blend composition. Such
knowledge will provide information about the range of
variation that other community members are exposed to
and will be essential for an understanding of the selective
forces that affect HIPV emission.

Conclusion and future perspectives
Although there is substantial evidence from laboratory and
field studies that HIPVs can attract carnivores, it remains
unclear whether their release results in a net fitness
benefit for the plant. It is clear that there is considerable
intraspecific variation in the emission of HIPVs and that
some of this variation has a genetic basis [98,103,104]. This
intraspecific variation and the presumed variation in
degree of attraction of carnivorous ‘bodyguards’, especially
when recorded for non-cultivated plants [103,104], might
indicate that natural selection on this plant trait mediat-
ing indirect defense has not been strong. However, an
alternative conclusion is that this variation reflects the
different selection pressures on the emission of HIPVs, the
mosaic of selection pressures and, thus, a mosaic of HIPV
emission characteristics analogous to the geographical
mosaic of coevolution [105]. The expression of defense
traits represents a balance of their selective benefits tem-
pered by their costs, and if HIPVs are a component of the
indirect defenses of a plant, one might expect that their
emissions have not been driven to extreme rates [106],
unless HIPV emissions also function allelopathically as a
competitive agent against neighbours, a special circum-
stance under which extreme emission rates might be
selected for.

HIPVs have more functions than just as carnivore
attractants and should be seen in the context of an info-
chemical web that overlays the food webs of a community
(Figure 2). Plants are under selection to maximise fitness
and this involves more than just defense against attack-
ers. Plants should alsomaximise their competitive ability,
by being a better forager than neighbouring plants and by
interacting with synergists such as mycorrhizal fungi;
they should also maximise reproductive output through
effective interactions with pollinators. Thus, an under-
standing of the evolutionary ecology of HIPVs should
concentrate on the role of HIPVs in a community context
rather than on the role of HIPVs in individual tritrophic
interactions. Rather than searching for the role of HIPVs,
researchers should focus on the various effects, and
relative selective strengths, of HIPVs on the reproductive
output of the plant. This is likely to complicate the study of
HIPVs but we remain optimistic that the rapid molecular
advances in current understanding of the mechanisms of
HIPV emissionswill provide the tools to createHIPV ‘deaf’
and ‘mute’ plants in many different taxa. When such
plants are planted into native habitats, they could provide
the means to integrate all of the complicated HIPV-
mediated interactions in a common currency of plant
fitness, just as Price and colleagues [30] envisioned 30
years ago.
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