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■ Abstract Grasses (family Poaceae) and fungi of the family Clavicipitaceae have
a long history of symbiosis ranging in a continuum from mutualisms to antagonisms.
This continuum is particularly evident among symbioses involving the fungal genus
Epichloë (asexual forms = Neotyphodium spp.). In the more mutualistic symbiota, the
epichloë endophytes are vertically transmitted via host seeds, and in the more antago-
nistic symbiota they spread contagiously and suppress host seed set. The endophytes
gain shelter, nutrition, and dissemination via host propagules, and can contribute an
array of host fitness enhancements including protection against insect and vertebrate
herbivores and root nematodes, enhancements of drought tolerance and nutrient status,
and improved growth particularly of the root. In some systems, such as the tall fescue
N. coenophialum symbioses, the plant may depend on the endophyte under many natu-
ral conditions. Recent advances in endophyte molecular biology promise to shed light
on the mechanisms of the symbioses and host benefits.
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INTRODUCTION

Symbiosis is the typical state for large organisms, either plant or animal. The most
widely studied symbioses are those that cause disease in the host. Other, more
benign, symbioses are less obvious, but mutualistic symbioses are of major eco-
logical and evolutionary importance. For example, most plants form mycorrhizae,
interactions of roots with various fungi that facilitate nutrient uptake from soil
(71). In the aerial parts of plants, endophytic and epiphytic fungi can be abundant,
though inconspicuous (27, 28). The major subfamily of temperate grasses, the
Poöideae, have many species possessing fungal endophytes that systemically in-
fect much or all of the plant, some of which are also seed transmissible (141). This
review focuses on the grass symbioses with the most widespread and beneficial of
these endophytes, theEpichlöeandNeotyphodiumspecies (phylum Ascomycota,
order Hypocreales, family Clavicipitaceae) (5, 86).

Note that the nameNeotyphodiumrefers to asexual derivatives ofEpichlöespp.
(66). Here, we introduce “epichlo¨e” as a general reference to these endophytes and
use the Latin genus names only when specifying asexual or sexual species.

By definition, a mutualism must involve exchange of beneficial currencies be-
tween the partners, and must also exact mutual costs, but benefits must outweigh
costs for both host and symbiont. Often, however, the relative benefits and costs
depend on environmental or ecological contexts. For example, mycorrhizal sym-
bioses show the most mutual benefit under low phosphate conditions (71). In con-
trast, benefits of clavicipitaceous endophytes to grass hosts have most often been
observed under conditions of herbivory or parasitism (40), or in some cases under
drought stress (101). Yet other benefits are also documented, including improved
acquisition of phosphate and utilization of nitrogen (95, 101). The grass-endophyte
symbioses demonstrate that benefits can be multifarious, and by coevolution of
the partners an ever-expanding array of currencies may evolve.

COORDINATED LIFE HISTORIES

Symbiotic Continuum and Life Cycles

Symbioses of grass plants with epichlo¨e fungi can be mutualistic, antagonistic,
or exhibit both mutalistic and antagonistic characteristics. Where a symbiotum
sits on that continuum is strongly influenced by the symbiont life cycle, which in
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turn strongly influences host reproduction. In the more antagonistic symbiota, host
seed production is completely suppressed (choke disease) and the symbiont only
transmits horizontally via sexually derived spores (ascospores) (150). In contrast,
the more mutualistic associations are characterized by vertical transmission of the
fungal hyphae via the seeds, which become the common diaspore for plant and
symbiont. This represents an asexual form of endophyte reproduction. Completing
the continuum are plant-epichlo¨e symbiota that have both choked and symptomless
inflorescences (130, 133), and exhibit both antagonistic and mutualistic effects.

Although Epichlöe spp. had been known of for centuries, their strictly seed-
borne relatives (in their inimitably subtle fashion) long eluded the attention of
botanists. The first accounts of such endophytes were published near the end of
the nineteenth century. Vogel (148) identified a densely interwoven layer of fungal
hyphae in the remains of the nucellus between the aleurone and the seed coat of the
grain in seeds of darnel (Lolium perennesubsp.temulentum= L. temulentum).
In 1898 Guérin (67) suggested that the hyphal layer in the grain indicates mutu-
alistic, rather than antagonistic, symbiosis. Among the studies of the darnel seed
fungus that ensued, it was Freeman (62) who, in 1904, first detailed the entire co-
ordinated plant-endophyte life history, observing that hyphae gain entrance to the
embryo long before seed maturation (Figure 1). After seed germination the endo-
phyte coordinates its growth with the above-ground plant tissues (Figures 2 and 3),

Figure 1 Colonization by aNeotyphodium occultanshypha (h) of the embryo of
Lolium perennesubsp.temulentumearly in its development. Reprinted with permission
(62).
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Figure 2 Endophyte growth in a grass plant. Bottom left: fungal growth in the true
stem and leaf primordia. The fungal hyphae are shown darkly stained with osmium
as they would appear in TEM (transmission electron microscopy). Upper left: A cross
section of leaf or leaf sheath reveals hyphae (h) of the epichlo¨e endophyte between
host cells. Also shown are a chloroplast (ch) and vacuoles (v). Right: the endophyte
as it appears in a leaf epidermal peel, stained for hyphae, which are arranged mainly
along the longitudinal axis of plant cells. Unstained septa separate individual fungal
cells, each of which bears a single haploid nucleus (not shown). Micrographs are at
different scales. For comparison, epichlo¨e hyphae are approximately 1–2µm thick.

colonizing lateral buds and, later, inflorescences. Vertical transmission of the asex-
ual Neotyphodiumspp. is remarkably efficient. In most natural associations the
endophyte is present in essentially all seeds and, if the seed is freshly germinated,
all progeny seedlings bear the symbiont (139). The hyphae never extend into roots
or invade anthers. With the Freeman study (62) the systemic nature and maternal-
line vertical transmission were clearly established for this representative of the
clavicipitaceous endophytes.

In the 1930s Sampson (130, 131) made a key discovery concerning sexual en-
dophytes. She compared an endophyte inFestuca rubra[now known asEpichlöe
festucae(92)] with Epichlöe typhinaon Dactylis glomerata. Whereas the latter
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Figure 3 Electron micrographs showing hyphae of (a) Neotyphodium aotearoaeand
(b) N. australiensein transverse leaf sheath sections ofEchinopogon ovatus. Annota-
tions are as follows: hypha (H), endophyte nucleus (EN), host nucleus (N), chloroplast
(Ch), host cell wall (W), Golgi apparatus (G), plasmodesmata (vertical arrows), and
endoplasmic reticulum (horizontal arrows). The plant cells appear normal, with no
obvious damage or response to the endophytes. Scale bars represent 1µm. Reprinted
with permission (108).

represents a textbook example of choke disease affecting all inflorescences, the
F. rubra symbiont exhibits both the ability to cause choke and the ability to
disseminate via seeds in a fashion similar to the strictly seedborne endophytes
of perennial ryegrass (L. perennesubsp.perenne) and darnel. Remarkably,E.
festucaecan manifest its sexual cycle or asexual cycle on different tillers of
the same plant, a characteristic later shown for mostEpichlöe spp. in poöid
grasses (Figure 4). This finding connected the asexual endophytes with their sexual
relatives.

TheEpichlöesexual cycle (Figure 5) commences with accelerated fungal pro-
liferation when the host forms inflorescence primordia (80). Grass internodes
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elongate, raising the immature inflorescence, which is initially surrounded by a
leaf sheath. Immediately prior to the stage when the inflorescence would emerge
from the boot, the white endophyte mycelium proliferates specifically on the
leaf sheath surrounding the young inflorescence, and mycelia thoroughly ram-
ify the inflorescence. This fungal structure is the young stroma, which is loaded
with conidia (mitotic spores). With stroma formation, the underlying inflores-
cence fails to emerge, and no seeds are produced on that tiller. If conidia (acting
as spermatia) of one mating type are transferred to a stroma of opposite mat-
ing type, fruiting structures develop over the next three to six weeks. Eventu-
ally, fruiting bodies (perithecia) develop with scores of sacs (asci), each with
eight ascospores. The ascospores are ejected into the air and mediate infection
of neighboring plants (19) or developing seeds produced on neighboring plants
(39).

The Third Mutualist and Fungal Pollination

TheEpichlöespp. require fly “pollinators” (Figure 5). The opposite mating types,
mat1 and mat2, are cross-fertilized by flies of the genusBotanophila(order Diptera,
family Anthomyiidae) (1, 24, 72, 82). Female flies transfer spermatia within their
gut as they feed and oviposit. Immediately following oviposition, the fly fertilizes
the stroma by a stereotypical fly behavior: She drags her abdomen while excreting
feces on the stroma surface (24). Her larvae grow by feeding on the developing
perithecial stroma and ultimately drop to pupate in the soil. This appears to be an
obligate mutualism having much in common with associations between plants and
their pollinating parasites (2, 21, 116, 146).

At least five described species are associated withEpichlöe hosts in Europe
(49, 72, 105). Additional fly taxa genotypically distinct from the European species
were identified in North America (A. Leuchtmann, unpublished data). Two or more
differentBotanophilaspecies can co-occur at a particular locality (49).

This unique association ofEpichlöe with Botanophilaspp. is a delicately bal-
anced symbiosis. TheEpichlöe fungi benefit from the flies as reliable vectors of
spermatia, and the larvae depend on fertilized stromata as food (24). Larvae on un-
fertilized stromata seldom reach pupation (A. Leuchtmann, personal observation).
As in pollinating parasites of flowering plants, the fly mutualism imposes a cost to
the fungus by reducing the potential output of ascospores (149). However, flies do
not overly exploit stromata, and the net effect ofBotanophilaon ascospore produc-
tion is clearly positive (23, 24). One possible explanation for how the symbiotic
balance is maintained is the observation that greater fly visitation with multiple
eggs laid on a single stroma increases larval mortality. The causes for mortality
are unknown but could be diseases or the parasitoids that commonly emerge from
Botanophilapupae (82; A. Leuchtmann, personal observation).

The nutritional dependence ofBotanophilalarvae on fertilized stromata sug-
gests that females should maximize cross-fertilization of stromata. This could be
promoted through species-specific visitation habits by flies. Analysis of ascospore
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progeny from experimental field plots indicates prevalence of specific matings be-
tween stromata of the same hostEpichlöe species, suggesting that fly visitations
can be species-specific (89, 90). Genotypes of spermatia contained in feces of in-
dividual flies support this hypothesis (22). Although most flies carry a mixture of
spermatia of differentEpichlöe spp., individual flies tend to carry spermatia pre-
dominantly from one species. Thus, flies may adopt “majoring” and “minoring”
specificities for their host fungi. Fly selectivity may be one of the mechanisms
promoting reproductive isolation among someEpichlöespecies or host races.

REGULATING ENDOPHYTE GROWTH IN PLANTA

A crucial characteristic predisposing epichlo¨e endophytes to evolution of mutual-
ism is their strictly controlled intercellular growth throughout the host plant. The
hyphae never breach host cell walls nor develop conspicuous feeding structures
such as haustoria or arbuscules (62, 75, 118). Some but not all epichlo¨e endophytes
colonize vascular bundle tissues without ill effects (33). Only in association with
stroma development are host cells typically damaged. White (151) suggests that
the collapse of epidermal cells in the stromal leaf helps direct transpiration and,
with it, nutrient flow through the stromal tiller.

Within the grass leaf the endophyte follows very distinct basal to apical hyphal
concentration gradients (35, 73, 77). The hyphae appear to originate from profusely
branching mycelium in the basal meristems (34), required to form new leaves,
tillers, and inflorescences (34, 62, 118, 144, 151, 152). In the expanding and
mature leaf tissues the hyphae are rarely branched and are arranged mainly along
the longitudinal axis of adjacent plant cells. What causes the transition from highly
branched hyphae in the plant base to single, thread-like hyphae in the leaf sheathes
and blades is unknown, but may involve physical restrictions to branching as well
as biochemical cues released from the surrounding plant cells. Within the plant, the
meristems represent strong sinks providing a nutrient-rich environment for hyphal
growth. In such an environment the endophyte may not need to alter or damage the
host cells to obtain the necessary nutrients for profuse growth. Several enzymes
putatively involved in nutrient acquisition were recently discovered (84, 85, 93,
94, 111, 123), though some of these could also be involved in hyphal growth and
branching, and perhaps even in suppressing potential host defenses.

It has been suggested that colonization of newly developing leaves occurs by
apical growth of hyphae into the elongating leaf (136). Christensen and colleagues
(74) questioned this model, noting that hyphae appear to be intimately attached
to host cell walls and the intercellular matrix, which are often interdigitated with
the outer cell wall of the hyphae (see Figure 3) (118). Also, hyphae in the tips
of expanding leaves appear to be older, not younger, than those at the basal parts
of the same leaf. Christensen hypothesized that the hyphae undergo intercalary
elongation as leaf cells also expand, thus preventing destruction of the hyphae
(74). This proposal is intriguing because intercalary growth is very rare in fungi.
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Endophyte growth is strictly synchronized with grass plant growth; hyphae ac-
tively grow in expanding leaves but cease to grow as the leaf completes elongation
(144). Such closely coordinated growth also characterizes embryo colonization
(62). The exception is the extensive proliferation and ramification during stroma
formation to initiate the fungal sexual cycle. Even this stage appears to be highly
regulated because it occurs only during flowering and only between the flag leaf
collar and its underlying node (80, 132, 133, 152).

Because epichlo¨e colonize all above-ground organs of the plant, they must
adjust their growth rates and forms as the plant tissues differentiate. The most
dramatic example of such a developmental switch is stroma initiation versus benign
infection of developing inflorescences leading to seed transmission. Colonization
of the plant and endophyte differentiation is most likely governed by multiple
factors: biochemical changes such as phytohormone or metabolite concentrations,
and/or physical changes such as movement of dividing or elongating plant cells
(144). The observed host specificity of grass endophytes (37, 81) strongly suggests
that host and symbiont communicate by specific signals.

EFFECTS ON OTHER ORGANISMS

Anti-Insect Activities

Endophyte symbiosis exerts effects on numerous species including herbivorous
and parasitoid insects, nematodes, granivorous and herbivorous birds and mam-
mals, mycorrhizal and pathogenic fungi, and neighboring plants. A remarkable
characteristic of many epichlo¨e is their ability to produce several distinct classes
of biologically active alkaloids (Figure 6). Activities of epichlo¨e alkaloids on in-
sects are well documented, and have been the subject of several major reviews (26,
41, 43, 44, 138). The neurotropic activities of lolines, and the activity of peramine
as a feeding deterrent, can significantly enhance competitiveness of grasses with
endophytes that produce these alkaloids. One of the most dramatic examples in-
volves the Argentine stem weevil (Listronotus bonariensis), a devastating pest of
perennial ryegrass in New Zealand. If undeterred, this exotic pest feeds on the
crowns, and in much of New Zealand can eradicate entire stands.Neotyphodium
lolii effectively protects the grass from this and several other insect herbivores
(120), and the endophyte alkaloid, peramine, is primarily responsible for feeding
deterrence (128). Peramine production in various endophyte-infected grass species
also correlates with activity against the aphidSchizapus graminis(140).

Loline alkaloids exhibit a broader range and more overt toxicity to insects
than does peramine (25, 126). For example, lolines but not peramine in symbiota
correlates with, and is genetically linked to, activity against the aphidsRhopalosi-
phum padiandS. graminis(140, 154), whereas no activity of peramine against
R. padi was evident in no-choice feeding tests (140). Deterrent activities of lo-
lines and peramine against sucking insects may also help to reduce infections by
plant viruses vectored by those insects (45, 97). Loline alkaloid levels can increase
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Figure 6 Representatives of the four classes of alkaloids produced by epichlo¨e endo-
phytes of grasses, namely, 1-aminopyrrolizidine alkaloids (lolines), peramine (the only
known pyrrolopyrazine), indolediterpenes (here represented by paxilline and lolitrem
B), and ergot alkaloids (ergovaline, ergonovine, and ergine). Also shown is chan-
oclavine I, a clavine alkaloid precursor to the ergot alkaloids.

dramatically in response to clipping (mock herbivory) (26, 50). Thus, lolines rep-
resent an inducible defense in the symbiotum.

Effects on Vertebrates

Two other classes of endophyte alkaloids, indolediterpene and ergot alkaloids,
possess both anti-insect and antivertebrate activities, and are implicated in
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livestock problems such as ryegrass staggers and fescue toxicosis (83). In the
1930s, tall fescue (Lolium arundinaceum= Festuca arundinacea) was bred and
widely disseminated in the United States, touted as excellent forage with consid-
erable longevity, stress tolerance, and capacity to prevent soil erosion. However,
by the mid-1970s the problem of fescue toxicosis in cattle and other livestock had
been recognized, with symptoms resembling ergot poisoning caused byClaviceps
purpurea. Initially, researchers were unaware of the early work by Neill (112, 113)
on endophytes in both tall fescue and perennial ryegrass. Bacon et al. (66) redis-
covered the tall fescue endophyte now known asNeotyphodium coenophialum, and
associated it with ergot alkaloids (12). Of particular note was ergovaline (96), an er-
gopeptine similar but not identical to toxins inC. purpurea-contaminated grain. An
abundance of experimental evidence indicates thatN.coenophialumproduces alka-
loids that cause the symptoms associated with livestock grazed on tall fescue (145).

In New Zealand and Australia, where perennial ryegrass is a major component
of the agronomic system, toxicosis to grazing livestock was a long and persistent
problem. There, the common symptomology mimicked paspalum staggers, caused
by ingesting indolediterpene alkaloids produced byClaviceps paspali(47). On the
heels of the tall fescue endophyte discovery,N. lolii was identified as the ryegrass
endophyte causing staggers (60). TheN. lolii strains most common in Australia
and New Zealand produce indolediterpene alkaloids called lolitrems, referring to
their tremor-inducing neurotropic activity (64, 127).

In addition to the problems associated with perennial ryegrass and tall fescue,
endophyte-infected grasses native to several continents cause related symptoms.
Most notable are drunken horse grass (Achnatherum inebrians) in Asia, sleepygrass
(Achnatherum robustum) in North America, dronkgras (Melica decumbens) in
South Africa, andPoa huecu(causing huec´u toxicosis) in Argentina. The former
two are associated with ergot alkaloids—specifically lysergic acid amide (ergine)
and ergonovine—which induce stupor and aversion to future grazing (106, 117).
The latter two examples are associated with tremors that suggest indolediterpene
effects (46, 108, 119). Unlike ryegrass staggers, huec´u toxicosis can be lethal (119).

Correlations of endophyte infection frequencies with grazing pressure onFes-
tucaspecies were investigated in two distinctly different ecosystems. In the south-
western United States, most comparisons indicated no significant differences in
endophyte incidence between paddocks from which large grazers had been ex-
cluded for 5–14 years versus adjacent stands that remained available to wildlife
(129). However, infection frequencies in almost all cases were extremely high,
suggesting a different basis for endophyte maintenance such as drought tolerance
effects (110).

For F. rubra on the Scottish islands of St. Kilda and Benbecula, infection fre-
quencies correlate with grazing from feral Soay sheep, supporting the hypothesis
that the endophyte enhances survivability under grazing pressure, perhaps by de-
terrence (14). Also, population crashes in the feral sheep may be due in part to
epichloë toxicity (14). In the same study, ergot alkaloid levels greatly increased
in F. rubra-endophyte symbiota upon mock herbivory (clipping), again showing
that an epichlo¨e metabolite can represent an inducible plant defense.
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Endophyte effects on populations of small mammals are well documented, as
are deterrent effects on granivoruous birds (reviewed in 43). Clay & Holah (42)
observed that tall fescue withN. coenophialumdominated the field populations
of plants to a much greater extent than endophyte-free tall fescue, and attributed
this to reduced herbivory on theN. coenophialum-infected grass. Supporting this
hypothesis, vole reproduction was significantly reduced in plots with endophyte-
infected versus endophyte-free tall fescue (61). AsL. arundinaceum, mainly
N. coenophialum-infected, has become dominant in large areas of the continen-
tal United States, populations of small mammals appear to be negatively affected
(48, 65).

Effects on Nematodes

Among the most dramatic effects ofN. coenophialumin tall fescue is reduced par-
asitism by root-knot nematodes (Meloidogyne marylandi) and the migratory ne-
matodePratylenchus scribneri(58, 79). This is interesting because the endophyte
is completely absent (or nearly so) in roots (10, 75), so whatever is responsible for
antinematode activity must either be translocated from the endophyte-infected tis-
sues or induced in the plant by endophyte. In fact, an induced structural change in
the root—namely, thickening of endodermal cell walls—might reduce the ability
of M. marylandito penetrate the steele, induce giant cells (which provide nutrients
to M. marylandi), and reproduce (68, 79). The reduced parasitism helps enhance
effects associated with drought tolerance, namely, osmotic adjustment in growing
points of the plant, and root growth (58).

Unlike the root-knot nematode,Pratylenchus scribneripenetrates roots of
N.coenophialum-infected and endophyte-free tall fescue equally well, yetP.scrib-
neri reproduction is also inhibited by endophyte presence (79). Thus, antinema-
tode activity may be due to both a physical barrier and other mechanisms not yet
elucidated.

Effects on Fungi and Plants

Reports ofin symbioantifungal effects of endophytes are rare. Some protection of
seedlings against the soilborne pathogenRhizoctonia zeaehas been documented
(69), andE. typhinaprotects againstCladosporium phlei(137). Also, there are
inconsistent indications that tall fescue allelopathy against clover may be enhanced
by N. coenophialum(143). These aspects need greater attention in future.

MOLECULAR BIOLOGY OF ENDOPHYTE SECONDARY
METABOLISM

In some symbiota, lolines accumulate to very high levels, up to 2% plant dry
mass (25, 26), probably well exceeding endophyte biomass. Recently,N. unci-
natumcultures were demonstrated to produce comparable levels of lolines (17a).
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Additionally, Mendelian and molecular analysis identified polymorphism at a sin-
gle locus (LOL) in E. festucaethat determines whether or not lolines are produced
(154). A LOL locus gene was found to be related to genes for synthesis of cys-
tathionine (a methionine precursor), and to dihydrorhizobitoxine synthase (142a).
Further analysis ofLOL in E. festucaeandN. uncinatumindicated a cluster of at
least nine genes, all appearing to be unique to loline alkaloid producing strains, and
most having significant similarity to metabolism genes (142a; M.J. Spiering, H.H.
Wilkinson & C.L. Schardl, unpublished data). These gene relationships, along with
results of precursor feeding studies (J.D. Blankenship & C.L. Schardl, unpublished
data), suggest a pathway for loline alkaloid biosynthesis that differs substantially
from any known metabolic pathway. Thus, lolines represent a fungal trait char-
acterized by a specialized biosynthetic pathway culminating in an abundant and
potent defense of the host plant.

An etiological role for ergot alkaloids in fescue toxicosis seems likely but has yet
to be proven. Recent advances in molecular genetics of ergot alkaloid biosynthesis
open the door to more rigorous tests. ThedmaWgene for the first step in clavine
and ergot alkaloid biosynthesis has been cloned, first fromClaviceps fusiformis
(147a), then from aN. lolii × E. typhinahybrid endophyte ofL. perenne(148a).
The lpsAgene for the penultimate step in ergovaline production was cloned from
the same endophyte (115a). Directed mutagenesis of these genes in the endophyte
has confirmed their roles in ergot alkaloid biosynthesis (115a, 148a). Symbiota
with such mutant and corresponding wild-type endophytes can be used to inves-
tigate the roles of these alkaloids in livestock toxicoses and other host fitness
enhancements.

EFFECTS ON HOST PHYSIOLOGY

Effects on Growth and Abiotic Stress Tolerance

Many observations, made in controlled environments on single cultivars and natural
ecotypes of tall fescue, meadow fescue (Lolium pratense= Festuca pratensis),
and perennial ryegrass, suggest that their epichlo¨e endophytes (Neotyphodium
coenophialum, N. uncinatumandN. lolii , respectively) have positive effects on
plant growth. Enhanced biomass production, tiller numbers, seed production, and
root growth have been reported (16, 54, 63, 87).

Substantial (>50%) stand losses in tall fescue were reported after removing
the endophyte from this grass (122). These losses are typically associated with
drought periods, and endophyte-infected tall fescue exhibits improved recovery
after drought compared to endophyte-free tall fescue (7). It was proposed that
grass endophytes, particularlyN. coenophialumin tall fescue, affect plant water
relations, nutrient acquisition, as well as allocation and photosynthetic assimila-
tion (11, 63). Most investigations of epichlo¨e effects on stress tolerance focus on
osmotic adjustment, water relations, and drought recovery (17, 31, 55–57, 99, 110,
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121), accumulation of drought-protective osmolytes in the grass tissues (124), and
photosynthetic rates under water or heat stress (4, 103, 125). Under water stress,
the tall fescue endophyte is also associated with a significant increase in cell wall
elasticity as measured by bulk modulus tissue elasticity, and by turgid weight
to dry weight ratio (TW/DW) (153). Likewise,N. uncinatumincreases TW/DW
in water-stressed meadow fescue (98). Endophytes can induce in tall fescue and
meadow fescue increased root growth and longer root hairs, and decreased root
diameter (100, 102).

Taken together, there appears to be a trend toward improved physiological re-
sponses of endophyte-infected grasses to adverse environmental conditions. How-
ever, studies with several grass species confirm complex interactions between
endophyte status, plant genotype, water and nutrient availability, and spatial com-
petition (3, 13, 17, 20, 29–31, 59).

Little is known about the biochemical basis for endophyte-induced changes that
cause growth effects and increase stress tolerance. Production of phytohormones
by the endophytes—e.g., auxin [indoleacetic acid (IAA)]— may play a role in
plant growth alterations (53, 155) . However, levels of free IAA in the whole plant
are unaffected by endophyte infection (53). Nonetheless, localized or transient
changes might occur in the plant but could be difficult to detect.

Osmotic protection is more likely than stomatal conductance to be involved in
drought protection in tall fescue (9, 56, 57, 125), but reduced stomatal conductance
might be important to conserving water inFestuca arizonica-Neotyphodiumsp.
interactions (110). Some speculation regarding osmoprotectants centers around
the fungal loline alkaloids, which are abundant in those symbiota for which the
endophyte has a documented and consistent positive effect on drought tolerance
(101). Lolines fit several prerequisite criteria, being nontoxic to plant cells, highly
water soluble, and generally increasing in response to heat or drought. However,
it is unclear if lolines reach sufficient levels to significantly affect osmotic bal-
ance. If these alkaloids are involved, they might protect macromolecules from
denaturation and/or scavenge reactive oxygen species associated with drought
stress, possibilities not yet tested. Other potential osmoregulators and protectants
are soluble sugars and sugar alcohols, produced by the endophyte, plant, or both
(124).

Effects on Photosynthesis

Although it is useful to evaluate endophyte effects on photosynthesis, one should
consider that photosynthesis is not always a reliable predictor of the productiv-
ity of grasses and crops (88, 114). In fact, limiting the rates of photosynthesis
improves forage quality in terms of nitrogen content and digestible dry mat-
ter (78). It is often difficult to distinguish the effects of fungal symbionts from
other factors, such as plant species, age, and environmental conditions; photosyn-
thetic responses are not uniform among grass species, and epichlo¨e interactions
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with plant genotype and age may be significant (4, 9, 15, 18, 52, 103, 107, 110,
115, 121, 125, 142). Most studies have measured rates of net photosynthesis
and/or photochemical efficiencies in grass leaves, but little or no information exists
about endophyte-induced changes in amounts and/or activities of photosynthesis
enzymes. Identifying enzymes secreted by epichlo¨e in planta, namely, invertases,
glucanases and proteinases (84, 111, 123) might provide some leads. Higher in-
vertase and glucanase activities can increase levels of sugar monomers, causing
decreased enzymatic activities in the Calvin cycle (70, 109) and, consequently, de-
creasing rates of photosynthesis. Surprisingly, however, amounts of ribulose 1,5-
bisphosphate carboxylase/oxygenase (rubisco), a key enzyme and rate-limiting
step in the Calvin cycle (6), were unaffected by endophyte status (M.J. Spiering
& J. Schmid, unpublished data), despite significantly lower rates of net photosyn-
thesis of endophyte-infected grasses (142).

Given the wide variation in physiological responses of grasses to endophyte
infection, using endophyte-grass associations well characterized for growth and
photosynthesis and grown under carefully standardized environmental conditions
would be essential in future experiments seeking to unravel the physiological
responses to putative epichlo¨e signals as well as biochemical and biophysical
effects of the endophytes.

EVOLUTION OF GRASS-ENDOPHYTE SYSTEMS

Host Specificity

Natural hostNeotyphodiumsymbioses and (in the vegetative state) hostEpichlöe
symbioses exhibit little or no obvious host cell response to endophyte presence
(see Figure 3). Possible explanations are either that the endophyte simply fails to
trigger a response, or that the host response is actively suppressed. Although there
is no evidence yet to distinguish these possibilities, abundant evidence indicates
that compatible interactions are highly specific. In artificial inoculation studies
endophytes have been exchanged between related host species, namelyL. perenne,
L. pratense, and L. arundinaceum(32, 81). Fungal mycelium was introduced
into the apical meristematic region of seedlings or mature tillers. Some of the
resulting novel associations elicited incompatibility reactions such as premature
death of hyphae, death of host cells in the stem apex, and stunting of surviving
tillers. Often osmiophilic material was deposited in host cell walls adjacent to the
hyphae. Host specificity ofE. typhinastrains is heritable and under multigenic
control (38).

Epichloë Speciation and Co-Phylogeny with Hosts

Current knowledge about the evolution ofEpichlöeandNeotyphodiumspecies has
been reviewed thoroughly in two recent publications (43, 135) and is summarized
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here. Prior to 1993 theEpichlöe spp. on grasses of subfamily Po¨oideae were all
classified asE. typhina. Since then, nine new species have been described with the
aid of molecular phylogenetic analysis and mating tests. All the new species exhibit
limited host range, usually restricted to individual host genera or related genera
within a host tribe. The exception isE. typhinaas currently circumscribed, which
includes interfertile strains associated with many grass species in at least three
tribes. MostEpichlöe species are capable of vertical transmission. Of these, the
most intensely studied isE. festucae, for which vertical transmission dominates (8)
and which has strong mutualistic character (133). Molecular phylogenetic analysis
suggests that the seed-transmissibleEpichlöespp. have a history of cocladogenesis
(diffuse cospeciation) with the Po¨oideae (134). If so, then the grass-epichlo¨e system
is approximately 40 million years old.

Interspecific Hybrids

Some asexual endophytes appear to have evolved from theirEpichlöespp. ances-
tors by losing the capability to produce stromata and thereby initiate the sexual
cycle. However, most asexual endophytes analyzed to date are interspecific hy-
brids, with combined genomes or partial genomes of two or sometimes three
ancestors (135, 147). The genotypes of certain hybrids in relation to nonhybrid
asexual endophytes suggest that hybridization followed loss of sexual expres-
sion (though in some cases the process may have caused the change to a strictly
asexual state). The common tall fescue endophyte,N. coenophialum, is a dra-
matic example of an interspecific hybrid, having threeEpichlöe species in its
ancestry (147). This is illustrated, for example, by its threeβ-tubulin alleles (Fig-
ure 7), which are in contrast to the single allele for this gene found in every
known sexual species. One of theN. coenophialumalleles is derived fromE.
festucae, another fromE. typhina, and another from a third species yet to be
identified. Hybrid endophytes appear to retain much of their ancestral genomes,
having substantially larger genome sizes than sexualEpichlöe spp. (Figure 7)
(82b).

The abundance of interspecific hybrids in surveys of endophyte species and
the dominance of some hybrids in host populations strongly indicate that they are
selectively favored (135). The basis for that selection is not obvious, but it seems
likely that hybridization provides similar benefits to sexual reproduction. These
may include the ability to purge or mask deleterious mutations, or the pyramiding
of genes for host fitness enhancements. The fates of epichlo¨e lineages that are
only transmitted vertically are inextricably bound to the fates of their individual
host plants and maternal-line descendents of those plants, so that host fitness
should be more important in their evolution than it is for horizontally transmissible
epichloë. Another possibly selective factor is that hybridization enhances the pace
of evolution to keep up with host evolution (note that many grass hosts are also
interspecific hybrids). Without a sexual cycle to adapt to host evolution, clonal

A
nn

u.
 R

ev
. P

la
nt

 B
io

l. 
20

04
.5

5:
31

5-
34

0.
 D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 S

w
ed

is
h 

U
ni

ve
rs

ity
 o

f 
A

gr
ic

ul
tu

ra
l S

ci
en

ce
s 

on
 0

1/
14

/0
8.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



24 Apr 2004 19:40 AR AR213-PP55-13.tex AR213-PP55-13.sgm LaTeX2e(2002/01/18)P1: GDL

330 SCHARDL ¥ LEUCHTMANN ¥ SPIERING

Figure 7 Southern analysis indicating singleβ-tubulin gene alleles inEpichlöe fes-
tucae(Ef ) andE. typhina (Et), two alleles in anNeotyphodium lolii× E. typhina
hybrid (Nx) from perennial ryegrass, and three alleles inN. coenophialum(Nc), a
complex hybrid endophyte from tall fescue. Equal amounts of nuclear DNA were
loaded in each lane. Genome size estimates were from quantitative Southern analysis
and electrophoretic karyotyping (82b).

endophytes might not maintain these associations for long unless they have this
additional evolutionary mechanism.

Evolutionary diversification of endophytes adds to the evolution of hosts to
enhance the genetic diversity of symbiota. As surveys of endophytes continue,
it is apparent that grass species often harbor two or more seedborne endophytes
of distinct genotype and ancestry (36, 135). Combined plant and endophyte hy-
bridization results in symbiota loaded with genes evolved in various ancestors
under various ecological conditions. The tall fescue-N. coenophialumsymbiotum
represents one of the world’s most complex, heritable genetic systems. The plant
has three nuclear genomes (as an allohexaploid) (76), two organellar genomes
(plastid and mitochondrion), and an endophyte with contributions from three dif-
ferentEpichlöespecies (147).
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CONCLUDING REMARKS

The highly efficient heritability of many epichlo¨e endophytes, and the dominance
of endophyte-containing plants in populations of tall fescue (36), meadow fescue
(36, 50), and other grasses, present the possibility that many symbiota have evolved
as grass-endophyte units over thousands or even millions of generations. In the
process, the symbiota have colonized diverse environments. For example, tall fes-
cue withN. coenophialumnaturally ranges from northern Europe into Morrocco
(51, 104). The broad range of endophyte benefits might be due to such long-term
coevolution. The origins of these mutualisms are undoubtedly rooted in significant
contributions by the symbionts of one or more benefits, such as protection from
herbivory. However, after a long coevolutionary history the contributions of host
and symbiont to many adaptations—such as to drought, nematodes, or low phos-
phate availability—should be much more entangled than if the plant were rarely
or transiently associated with these endophytes.Intricate signaling systems would
evolve, evidenced, for example, by the dramatic induction of endophyte alkaloids
upon clipping of host leaves (50). Effects of these foliar endophytes on root archi-
tecture, apparently adaptive for drought tolerance and nematode resistance (58),
also support this coevolutionary scenario.

Recent years have seen major advances in molecular biology and genetics of
the endophytes and their hosts, placing these systems prominently among the
models of mutualism in plants. Crucial aspects of the genetic systems and genome
compositions of sexual and asexual epichlo¨e endophytes have been elucidated,
and the application of Mendelian and molecular genetic techniques have identified
genes for alkaloids that play major roles in the mutualisms (115a, 142a, 148a, 154).
Technologies for genetic and molecular genetic manipulations of the host grasses
have steadily advanced as well (82a, 144a), and new functional genomic studies
of endophytes and their hosts have been undertaken (54a, 131a). These advances
position us to elucidate the specific mechanisms of grass-endophyte interactions
and their mutualistic effects.

We now understand these systems sufficiently to start addressing some broader
questions as well. For example, (a) Precisely what are the economic and envi-
ronmental implications of grass endophytes, including but not limited to those in
agronomic grasses? (b) How can the endophyte benefits best be used for agri-
cultural and amenity grasses, and how can livestock detriments be minimized?
(c) What is the ecological significance of grass endophyte diversity, and is this
something that needs special attention for conserving germplasm and habitat?
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gal symbionts of grasses.Annu. Rev.
Phytopathol.34:109–30

133. Schardl CL. 2001.Epichlöe festucaeand
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GRASS-ENDOPHYTE SYMBIOSIS C-1

Figure 4   Simultaneous expression of diseased and benignly infected inflorescences
on the same Agrostis perennansplant systemically infected with Epichloë amaril-
lans. The normally developing inflorescences (above) produce seeds bearing the
symbiont, whereas other inflorescences bear the sexual state of the fungus (below).
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