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KEY POINTS

� Effective transition management requires an integrated approach to nutritional and envi-
ronmental management to provide cows with freedom from rumen disruption, mineral
deficiencies, immunosuppression, disorders of lipid metabolism, and other forms of stress
(eg, toxic feeds, social disruption).

� The skeleton is an important regulator of energy and protein metabolism.

� Although calcium is pivotal in the pathogenesis of milk fever, the most significant factor
influencing risk of milk fever is the magnesium content of the diet.

� Vitamin and mineral status of cattle should not be considered in isolation from other
antioxidants or from the level of oxidative challenge. Adequacy is a function of these in-
teractions, not just a single vitamin or mineral, and increased concentrations of 1 of these
may also not be better.
INTRODUCTION

Although controlling disorders of macromineral metabolism, and in particular milk
fever, forms a small part of the overall management of the transition cow, it is often
the focus at a producer level. As a result, it is critical to ensure that any transition
cow program is effective in controlling macromineral disorders. Further, recent devel-
opments in understanding of the role of calcium in metabolism and bone as an inte-
grator of metabolism reinforce the need to ensure that there is careful attention to
calcium metabolism. The concept of milk fever and hypocalcemia being central to
the interactions of other diseases has been well understood since the pivotal studies
of Curtis and colleagues.1 Recent understandings of the role of bone in integrated
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metabolism (reviewed later) provide a basis on which to understand the gateway role
of milk fever in other disorders and reproduction.
The pathophysiology of hypocalcemia and dietary manipulations to control the risk

of milk fever have been extensively reviewed,2–5 and insights from these reviews are
incorporated in this article. Further, the understanding that transition management
needs to be fully integrated to be effective6 is discussed in the context of review of a
study that integrated these priniciples.7–9 Micronutrient needs are addressed in the
context of vulnerability of cattle to oxidative stress and inflammatory disorders. This
article concludes with a series of practical approaches to improving transition diets.
Approach to transition management: correcting 1 area of challenge is not enough. Effective
solutions are derived from ensuring freedom from rumen disruption, mineral deficiencies,
immunosuppression, and disorders of lipid metabolism and that further other forms of stress
(eg, toxic feeds, social disruption) are reduced and cows are comfortable.
Milk Fever Control

The following recommendations for the dietary control of hypocalcemia are based on
4 meta-analyses examining factors influencing the risk of milk fever.10–13 These meta-
analyses showed that the risk of milk fever can be predicted from dietary levels of cal-
cium, magnesium, phosphorus, dietary cation-anion difference (DCAD) (as calculated
by [Na1 1 K1] � [Cl� 1 S2�]), breed of cattle, and duration of exposure to the diet. To
effectively prevent these disorders, careful attention is needed to concentrations of
calcium, magnesium, and phosphorus as well as the DCAD of the prepartum diet
(Table 1).
What is meta-analysis?: a form of study design that uses previous studies to provide a pooled
estimate of effect of an observation or intervention. Well-conducted meta-analyses are the
gold standard for assessing these effects and provide more precise estimates of the effect of
interventions. Ideally, these studies are based on randomized controlled studies.
DCAD

The DCAD theory of milk fever prevention has its basis in the strong ion model of acid:
base balance,14 modified in the 1980s15 and simplified in the late 1990s.16 Some
contention still exists regarding the most appropriate equation for predicting DCAD.
Charbonneau and colleagues13 preferred the equation (Na1 1 K1) � (Cl� 1 0.6 S2�)
on the basis that it was the best equation at predicting blood pH, whereas DeGaris
and Lean3 preferred the equation (Na1 1 K1) � (Cl� 1 S2�), because the equations
were equivalent for predicting the risk of milk fever. Given that the equations are equiv-
alent for predicting milk fever, we recommend use of the latter and more simple
equation.
The simplified strong ion model17 to predict plasma pH is:

pH5pK0
1 1 log

½SID1� � Ka½ATOT�=ðKa 110�pHÞ
S � pco2

where pK0
1 is the ion product of water, Ka is the effective equilibrium disassociation

constant for plasma nonvolatile weak acids, [SID1] is the strong ion difference,



Table 1
Logistic meta-regression analysis of the dietary components and variables that predict the
incidence of milk fever (random effects model)

Predictor Variable Coefficient Standard Error P Value Odds Ratio
95% Confidence
Interval

Constant �5.76 1.028 0.001 0.003 0.001–0.024

Breed 1a 0.86 0.382 0.024 2.374 1.122–5.023

Breed 2b 1.49 0.824 0.071 4.424 0.880–22.235

Cac 5.48 1.729 0.013 239.362 8.082–7089.244

Mgc �5.05 1.618 0.002 0.006 0.001–0.152

Pc 1.85 0.716 0.010 6.376 1.566–25.958

DCAD 1d 0.02 0.007 0.040 1.015 1.001–1.030

Ca * Ca �2.03 0.819 0.013 0.131 0.026–0.654

Exposuree 0.03 0.014 0.030 1.030 1.003–1.058

Trial �0.01 0.001 0.369 — —

Variance (s) 1.33 0.357 — — —

a Breed 1, Jerseys (Holstein Friesian used as the reference breed).
b Breed 2, Norwegian Red and White (Holstein Friesian used as the reference breed).
c Ca, Mg, and P expressed as % of DM.
d DCAD 1 5 (Na 1 K) � (Cl 1 S) in mEq/100 g DM.
e Exposure is the mean time in days that the cows in a study were exposed to the precalving tran-
sition diet.

From Lean IJ, DeGaris PJ, McNeil DM, et al. Hypocalcemia in dairy cows: meta analysis and dietary
cation anion difference theory revisited. J Dairy Sci 2006;89:673.
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[ATOT] is the plasma nonvolatile weak acid concentration, S is the solubility of CO2 in
plasma, and pCO2 is the partial pressure of CO2 in plasma. The implication of this equa-
tion is that the major variable factor that can be readily influenced is the strong ion dif-
ference and prevention of milk fever involves, in part, the appropriate application of
DCAD theory to reduce the strong ion difference ([SID1]) by lowering plasma pH
and producing strong ion metabolic acidosis. This goal can be achieved by feeding
salts of the strong cations (CaCl2, CaSO4, MgCl2, MgSO4, NH4Cl, and (NH4)2SO4) or
acids of the anions (HCl and H2SO4). The strong cations Ca21, Mg21, and NH4

1 are
absorbed to a lesser extent from the gastrointestinal tract (GIT) than are the strong an-
ions Cl� and SO4

2�. The differential absorption results in a relative excess of absorbed
anions compared with absorbed cations lowering the [SID1] and subsequently plasma
pH. Because Na1 and K1 are absorbed with near 100% efficiency in the intestine,
NaCl and KCl have a net effect of zero on the [SID1].
Inducing a mild metabolic acidosis in the prepartum cow reduces milk fever risk

through changes in calcium metabolism. Numerous effects of decreasing or
increasing the DCAD of precalving diets have been reported. Among the effects
reported are:

� Metabolic acidosis in goats18,19 and cattle20

� Decreased renal sensitivity to parathyroid hormone (PTH) in cows fed a strongly
positive DCAD precalving diet20,21

� Enhanced renal production of 1,25(OH) vitamin D3 in response to a low-DCAD
precalving diet20,21

� Increased responsiveness of target tissues to 1,25(OH) vitamin D3 associated
with increased calcium absorption from the intestinal tract22



Lean et al370
� Increased resorption of calcium from bone stores23–25

� Calciuria20,26–28

� Increased plasma ionized calcium concentrations26,28

Critically, the overall effect is to increase calcium turnover through increased GIT
absorption and increased sensitivity of target tissues to homeostatic signals, rather
than an improvement in overall calcium balance. The meta-analyses of milk fever
risk factors10–13 have identified that the effect of DCAD on the risk of milk fever is linear
and independent of the important effects of dietary Ca, Mg, and P concentrations.
Consequently, any reduction in the DCAD decreases the risk of milk fever. This linear
relationship should not be confused with the curvilinear relationship between DCAD
and urine pH, with DCAD having little impact on urine pH until it reaches approximately
20 mEq/100 g dry matter (DM) (Fig. 1). This curvilinear relationship is caused by renal
buffering systems that maintain an alkaline urinary pH until overwhelmed. Although
recommendations exist for target urine pH to ensure adequate acidification, these
assess only effectiveness of DCAD management of the diet and not the risk of milk
fever.
Urinary pH: monitors efficacy of the DCAD; does not monitor milk fever risk. Good transition
diets prevent milk fever; urinary acidification is only part of this, and urinary pH is not a
good predictor of milk fever risk. We recommend sampling and testing feeds for mineral
concentrations and assessing quality in preference to (but not exclusive of) testing urine.
Our recommendations for the balancing of the macromineral component of transi-
tion diets are listed in a series of recommendations at the end of this article.

Calcium

The optimum concentration of dietary Ca intake for the control of milk fever is also
contentious, with Lean and colleagues6 and Thilsing-Hansen and colleagues5 sug-
gesting that the precalving intake of calcium be limited to 60 on a negative DCAD
diet and 20 g per day, respectively. McNeill and colleagues2 also concluded that
excessive calcium intake was an important risk factor for milk fever, but less so
than potassium. However, Goff4 concluded that calcium concentration in precalving
diets had little influence on the incidence of milk fever when fed at levels higher
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Fig. 1. Curvilinear relationship between urine pH and DCAD [(Na1 1 K1) � (Cl� 1 S2�)].
(From DeGaris PJ, Moss N, Lean IJ, et al. The transition period–preventing milk fever and
more. In: Proceedings of the Australian Cattle Vets 2005 - Gold Coast AVA Conference.
Gold Coast: Australian Association of Cattle Veterinarians. 2005. p. 66.)
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than the daily requirements of the cow (approximately 30 g/d). Oetzel29 recommended
a daily intake in the precalving diet of 150 g/d, a calcium concentration of between
1.1% and 1.5% of DM, in conjunction with a dietary DCAD of approximately
–15 mEq/100 g DM. However, the meta-analyses of Oetzel10 and Lean and col-
leagues12 found that a calcium concentration of 1.1% to 1.5% of DM provided
near-maximal risk of milk fever (Fig. 2). When the effects of length of time cattle
were exposed to a transition ration before calving were investigated, a quadratic inter-
action with calcium was found.12 This relationship suggests that short exposures to
high concentrations of calciummarkedly increase milk fever risk, whereas a prolonged
exposure to the same concentrations produces only a moderate risk (Fig. 3). These
observations may explain the differences in recommended calcium concentrations
of different workers.
The total exchangeable body calcium mass is only 1.5% of total body calcium in

mature cows.30 Goff and colleagues21 estimated an even smaller pool of readily labile
calcium bone stores, 6 to 10 g, based on responses of cattle to ammonium chloride-
induced acidosis.31 We have observed mild milk fever cases arising before calving
with low-DCAD and low-calcium diets, possibly reflecting calciuria stimulated by the
low-DCAD diets, and find that diets containing 0.4% to 0.6% calcium overcome
this problem.

Magnesium

The most significant factor influencing risk of milk fever is the magnesium content of
the diet.12 Magnesium may prevent milk fever through roles in

� The release of PTH and in the synthesis of 1,25-dihydroxycholecalciferol
� In hypomagnesemic states, kidney and bone are less responsive to PTH4,32

� Reducing renal calcium excretion. Wang and Beede33 found that nonpregnant,
nonlactating cows fed a diet high in Mg had lower renal calcium excretion than
those fed a diet low in Mg

Contreras and colleagues34 and van de Braak and colleagues35 reported poor cal-
ciummobilization in hypomagnesemic cattle. Although clinical hypomagesemia is rare
in dairy cattle, very low dietary Na or high dietary K concentrations may interfere with
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Fig. 2. Milk fever incidence in response to varying dietary Ca concentrations. (From Lean IJ,
DeGaris PJ, McNeil DM, et al. Hypocalcemia in dairy cows: meta analysis and dietary cation
anion difference theory revisited. J Dairy Sci 2006;89:674.)
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Fig. 3. Relationship between calcium%, days exposure to the transition diet, and milk fever
incidence (MF %). (Adapted from DeGaris PJ, Lean IJ. Milk fever in dairy cows - A review of
pathophysiology and control principles. Vet J 2008;176:64; with permission.)
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Mg transport across the rumen wall and result in clinical disease. Magnesium is best
supplied as magnesium sulfate, magnesium chloride, and magnesium oxide; caution
needs to be applied to supply in the chloride form, because this is unpalatable (we
have observed successful application in water). As with any other mineral, it should
not be assumed that more is better; we have observed problems associated with
supply of 0.8% magnesium in diets.

Phosphorus

Phosphorus also plays an important role in milk fever, with increasing phosphorus
concentrations increasing milk fever risk. Although phosphorus concentrations are
not as tightly regulated as calcium, both are closely related, with plasma PO4 concen-
trations regulated directly by 1,25(OH) vitamin D3 and indirectly by the PTH/calcium
negative feedback loop.36 However, in rats, hyperphosphatemia can inhibit the renal
production of 1,25(OH) D3 sufficiently to cause hypocalcemia.37–39 In cattle, there is
evidence that a prepartum diet high in phosphorus can have a negative impact on cal-
cium homeostasis, possibly by the same pathways.40–42 Hypophosphatemia may
contribute to the alert downer cow syndrome and long-term dietary P deficiency
has been implicated in the development of postparturient hemoglobinuria; however,
it is likely that the latter disease is multifactorial, with copper, selenium, and antioxi-
dant status playing an important role in the development of the disease.

Optimum Duration of Exposure

The duration of exposure to the transition diet was included in the models to predict
milk fever risk developed by Lean and colleagues,12 but had not been validated in trial
work. Subsequent studies tend to support an optimal period of exposure to transition
diets of 25 days before calving.9 Increased urinary calcium loss on low-DCAD diets
has been reported,43,44 and depletion of calcium stores over time may explain part
of this effect.

Age and Protein

There is good evidence that increasing age increases the risk of milk fever as a result
of decreased intestinal calcium absorption and responsiveness to hypocalcemia,45–47
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reduced bone turnover,48 and decreased bone responsiveness to PTH and vita-
min D.21 We found that the risk of milk fever increased by 9% per lactation in the sub-
population of studies used for a meta-analysis12 that reported age (unpublished data).
Increased protein concentration in the diet increased the risk of milk fever in some

models and approached significance in manymodels tested by Lean and colleagues12

(unpublished data). This effect was not large compared with magnesium and calcium
concentrations. However, too few studies provided data on this finding to include in
final published meta-analytical models.

Importance of Bone in Energy Metabolism

Important homeostatic links between bone and energy metabolism have been estab-
lished. This relationship was first postulated when obesity was discovered to reduce
the risk of osteoporosis in humans.49 Ducy and colleagues50 then proposed that the
bone and energy metabolism may be regulated by the same hormones. Mouse
models show that osteocalcin, produced by mature osteoblasts, completes the nega-
tive feedback loop between bone and energy metabolism, which is the hallmark of
homeostatic regulation.51 The uncarboxylated form of osteocalcin promotes

� b-cell proliferation
� Insulin secretion
� Independently increases peripheral tissue insulin sensitivity
� Adiponectin secretion by adipose cells

Although there is no specific research in cattle linking bone and energy metabolism,
there are findings that support the hypothesis that these may be linked, and this inter-
action seems to be a vital aspect of the homeorhetic adaptations to lactation. Many
studies support this conceptual framework at thephysiologic level, andclinically, Heuer
and colleagues52 found that obese cows (body condition scoring [BCS] >4.5/5) were at
greater risk ofmilk fever. Binger andcolleagues53 foundan increase in insulin resistance
in cows fed low-DCAD rations before calving. DeGaris and colleagues8 found a positive
relationship between BCS and area under the curve of blood Ca after calving, and
reanalysis of the data used in that study using time series techniques found significant,
positive correlations between blood calcium and glucose both before and after calving
(DeGaris, and Lean, unpublished data). Associations between ketosis and hypo-
calcemia are well recognized and have been recently reconfirmed in prospective, ran-
domized trials with anionic diets54 and cohort studies examining the effects of
hypocalcemia.55

Critically, links between calcium metabolism and health and reproduction are also
evident. Hypocalcemia is a risk factor for many of the important diseases of lactation,
including mastitis, ketosis, retained placenta, displaced abomasums, and uterine pro-
lapse. Hypocalcaemia is also a risk factor for reproductive disorders and is an indirect
risk factor for increased culling.25,56,57 Curtis and colleagues58 observed an increased
odds of mastitis of 8-fold for cows with milk fever. Although such increases have been
ascribed to recumbency and failure of teat sphincter closure, these mechanisms are
speculative. Cows with subclinical hypocalcemia (defined as <8.59 mg/dL) were at
greater risk of developing fever, metritis, and puerperal metritis compared with normo-
calcemic cows.55 There are differences in peripheral mononuclear cells function,
which indicate impaired function in hypocalcemic cows.59 Borsberry and Dobson60

in the United Kingdom found that cows with clinical milk fever had 13 more days
from calving to conception, a finding supported by Martinez and colleagues55 in hypo-
calcemic cows. These investigators also found lower conception rates in hypocalce-
mic cows and that 66.6% of metritis and 91.3% of puerperal metritis in this population
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was attributable to hypocalcemia. New Zealand studies61,62 found a tendency to
improved interval to conception in cows treated with calcium-containing products
after calving. Although further targeted research is needed to explore this potentially
important aspect of energy and bone metabolism in dairy cattle, those evaluating or
formulating diets should work on the premise that these links between bone health
and energy metabolism are substantial.

Specific Interventions

Vitamin D and calcium
One of the emerging areas of understanding is the important role of vitamin D in im-
mune function.63 Vitamin D has roles in both innate and adaptive immune responses.
Although cattle exposed to sunlight may obtain sufficient vitamin D, it is clear that
housed cattle do not unless supplemented. The target levels for optimal performance
are being identified, as are the optimal forms of supplementation. Supplying 40,000 IU
of vitamin D3 may be appropriate; however, there should be careful consideration of
the optimal timing of such supplementation before calving.
The potential benefits of the use of vitamin D metabolites have been recognized for

many years. Problems in finding satisfactory therapies have been encountered as a
result of needs to predict calving dates, variation in responses associated with
different prepartum calcium intakes,22,64 and the potential for toxic reactions to arise
from the administration of the vitamin D metabolites as a result of persistent hypercal-
cemia, such as the deposition of calcium in tissues, particularly the cardiovascular
system.65,66 Notwithstanding these limitations, several studies have reported positive
responses to 25-OH cholecalciferol on milk fever risk and metabolism. As better
understandings of vitamin D, calcium, and energy metabolism emerge, more detailed
recommendations on vitamin D use can be anticipated.

Acidifying feeds
Lowering the DCAD of the prepartum diet using mineral salts has produced a signifi-
cant increase or a trend toward increased milk production in lactation.23,67–70 These
responses are approximately 1 to 2 L per cow per day. The most researched of the
interventions is the acidifying protein meal BioChlor (Church and Dwight, NJ), pro-
duced using sulfuric and hydrochloric acids. Soychlor (West Central Soy, IA) is another
acidifying protein meal that is based on hydrochloric acid and soya-proteins.
Corbett71 retrospectively examined 13,000 DairyComp 305 records and found an in-
crease in daily milk yields of between 2.0 and 3.0 L for cows exposed to a transition
diet containing BioChlor for 15 to 21 days compared with 0 to 7 days’ exposure.
DeGroot72 in a randomized controlled trial found an average 2.0 L/d production
response in cows exposed to a prepartum diet containing BioChlor for 21 days over
cows fed control diet with a similar DCAD.

After calving
Recommendations for the target DCAD for lactating cows range from135 to140mEq/
100 g DM and are based on the meta-analysis of Hu and Murphy.73 Increasing the
lactating diet DCAD to these levels has been shown to increase DM intake (DMI),
milk components, and milk yield and possibly improve amino acid balance.73–77

Zeolites and calcium binding
Thilsing-Hansen and colleagues5 concluded that limiting the precalving calcium intake
to 20 g/d or less is 100% effective at preventing milk fever, but may be too low to incor-
porate with a negative DCAD diet. However, it is often difficult to limit daily calcium
intake to these levels. Calcium-binding agents (eg, zeolite A) have been shown to
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bind calcium and reduce Ca availability in precalving diets. However, some binders
have been associated with reduced DMI before calving and because they are nonspe-
cific, the potential exists for reduced availability of other divalent cations such as
magnesium, an action that would increase the risk of milk fever.5,78,79

Calcium drenches
Calcium drenches and gels are available and have been widely used to prevent and
treat hypocalcemia. Preventive gels are given as an oral drench during the 24-hour
period around calving. Most calcium gels are based on calcium chloride, which sup-
plies a soluble form of calcium and acidifies. Goff and Horst80 compared the effective-
ness of various calcium salts, including calcium propionate, calcium chloride, and
calcium carbonate. Although calcium chloride increased plasma calcium concentra-
tions higher than those of the other products, it could cause a severe acidosis80

and may irritate the oral and ruminal mucosa. Calcium propionate has the advantage
of being glucogenic and may reduce the risk of ketosis.81

Micromineral metabolism: free radicals and antioxidants in transition The homeo-
rhetic and homeostatic responses to lactation can be exaggerated or perturbed by
release of inflammatory mediators from lipid mobilization, environmental stressors,
or subclinical disease conditions that increase postparturient disease risks82–87

(see also the article by Sordillo and colleagues elsewhere in this issue). The magnitude
of effects of these responses aremost clearly shown by studies in which the antiinflam-
matory agent acetylsalicylate (aspirin), either fed or injected, markedly reduced the
risks of disorder after calving, increasedmilk production, and improved reproduction.88

Clinical situations in which inflammation is increased and free radicals may be
generated include:

� Challenge from infectious agents (novel agents, highly pathogenic, substantial
exposure)

� Deficiency states of antioxidants, either single antioxidants or several
antioxidants

� Parturition when cows are exposed to bacterial contamination of the reproduc-
tive tract, increased metabolic demands, and depletion of antioxidants associ-
ated with lactation and production of colostrum

� Higher-producing animals have higher metabolic activity rates and greater loss of
antioxidants in the milk

� Excessive intakes of prooxidants (eg, polyunsaturated fatty acids or catalysts
such as iron, copper or zinc)

� Estrus activity; there is a considerable capacity for free radical generation and
challenge during steroidogenesis and in the period of growth and atresia of
ovarian structures89; reproduction is not a sterile process, and consequently,
there is considerable potential for bacteria to create free radical challenge during
conception and early embryonic development

The processes of calving and lactation are proinflammatory. Inflammation is a crit-
ical part of innate immune responses and is an adverse response only when uncon-
trolled. Control of inflammation is exerted by ensuring that there is a good balance
between exposure to pathogens and that cows are able to mount effective innate
and humoral immune responses. When inflammatory effects are uncontrolled, these
effects are often mediated through propagating reactions that involve the generation
of free radicals.
Free radicals are generated as a normal part of metabolism in cellular respiration,

electron transport via cytochrome P450, enzymatic reactions, and significantly in the
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killing systems used by macrophages, neutrophils, and other phagocytic leucocytes.
This controlled release of free radicals is part of the immune response through the res-
piratory burst of phagocytic leucocytes. Granulocytes, mononuclear macrophages,
and lymphocytes use free radicals such as H2O2, myeloperoxides, and superoxides
as a means of destroying invading organisms and damaged tissue. The oxidative
agents released extracellularly or within phagosomes are a controlled response to
defined activated pathways.90 This process involves the production of high levels of
superoxide, which can cause significant damage to biological molecules in an iron
catalyzed reaction, in which OH$ is an intermediate. This reaction is called the Fenton
reaction and allows the formation of free radicals that are destructive to tissues.91 Free
radicals are unstable, react with the environment, and create toxic lipids, reactive pro-
teins, and other free radicals and further damaging tissues, DNA and RNA.92 Damage
from free radicals is more severe when systems that quench propagating reactions are
impaired, often through deficiencies in the antioxidant vitamins and minerals.
The balance of radical generation and antioxidant control is complex, because the

processes involved are highly interrelated, and excesses of trace elements can be as
damaging as deficiencies. Iron and copper are needed in key protective enzymes such
as transferrin, catalase (Fe), and Cu/Zn superoxide dismutase (Cu) that bind these;
however, excessive supplementation with copper or iron saturates potential binding
sites and increases the level of these metals in their free states. Free iron and copper
may catalyze oxidative reactions, as shown in the spectacular sudden death syn-
dromes associated with acute and chronic copper toxicity.
Serum concentrations of the fat-soluble vitamins retinol (vitamins A) and a-tocoph-

erol (vitamin E) decline around the time of calving,93 a decline that cannot be
completely accounted for by losses through the mammary gland.94 Curtis83 serially
sampled Holstein cows from 1 month before calving until 1 month after calving and
identified the likely transfer of many antioxidants to the calf, in utero and through
colostrum, a finding supported by many other studies. Plasma retinol, a-tocopherol
and b-carotene concentrations were depleted to nadirs at a mean of 4.5 days after
calving. Subsequently, plasma retinol and a-tocopherol concentrations increased.83

At the time that plasma retinol, a-tocopherol, and b-carotene concentrations were
lowest, plasma ceruloplasmin activities were highest, but these decreased at the
end of the sampling period. Whole blood glutathione peroxidase activities increased
and peaked 3.6 days before calving. Plasma ascorbate concentrations and erythro-
cyte Cu/Zn superoxide dismutase activities did not display consistent patterns of
change over the sampling period. There were significant correlations between the
changes in plasma retinol, a-tocopherol, and b-carotene concentrations and also
between plasma ceruloplasmin and whole blood glutathione peroxidase activities.
Initial increases in malondialdehyde (an indicator of free radical damage) concentra-
tions were associated with decreases in concentrations of the fat soluble vitamins
and the decrease in malondialdehyde over calving was associated with increases in
plasma ceruloplasmin and whole blood glutathione. The findings of Curtis83 show
strong interactions among antioxidants.
At calving, cows with plasma a-tocopherol concentrations less than 3.0 mg/mL were

at 9.4 times greater risk of having mastitis within the first 7 days of lactation compared
with cows with higher concentrations.95 LeBlanc and colleagues96 did not find a pro-
tective effect of prepartum serum a-tocopherol concentration on mastitis, but for
every 1 mg/mL increase, retained placenta incidence was reduced 21%. Because
serum retinol concentration increased 100 ng/mL during the last week of gestation,
risk of clinical mastitis in early lactation was decreased 60%.96 Serum vitamin concen-
trations can be augmented with appropriate dietary supplementation.97–100 However,
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caution should be exercised in use of transition metal and vitamins antioxidants,
because these can have adverse or no effects when fed greater than requirements.
Responses to additional vitamin E in dairy cattle have been variable, and a meta-
analysis of use of vitamin E and selenium in beef feedlot cattle indicated that feeding
vitamin E at concentrations greater than the National Research Council (NRC) recom-
mendation, or the administration of vitamin E as an injection, did not improve average
daily gain, efficiency of gain, or morbidity in feedlot cattle.101

Although trace mineral nutrition of dairy cattle is of great importance and many trace
minerals improve immune function,102 the capacity for interactions with other dietary
inputs and variation in individual animal requirements means that despite extensive
study, there are still many areas that require clarification. Although the inflammatory
pathways that influence health, productivity, and reproduction are complex, the clini-
cian need not understand all of the pathways to be aware and enact preventive stra-
tegies. Ensuring that mineral and vitamin intakes meet or moderately exceed NRC
requirements is essential. The source of such minerals may be important because re-
sponses have been noted in both production and reproduction to organic sources of
minerals.103

Table 2 highlights the dietary sources, active forms, sites of action, and types of
action of antioxidants in cattle.
Free radical management and controlling inflammation: themajor implication of Curtis’ work is
that vitamin and mineral status of cattle should not be considered in isolation of other antiox-
idants, nor of the level of oxidative challenge; adequacy is a function of these interactions, not
just a single vitamin or mineral; increased concentrations of 1 of these may also not be better.
Putting it all Together: a Cohort Study of Integrated Interventions

In a large, prospective observational study examining the effect of increasing days
exposure to a BioChlor-based transition diet that was formulated to deliver on a DM
basis, 16.0% CP (crude protein), 4.2% rumen undegradable protein, and 6.9 MJ/kg
(0.65 Mcal/#) NEL.

7–9 The diets provided an average metabolizable protein balance
of 286 g/d based on the Cornell Net Protein and Carbohydrate Model and a dietary
cation anion difference of –15.0 mEq/100 g, provided micronutrients to meet or
exceed NRC requirements, and rumen modification to control risk of acidosis.
Increasing exposure to the prepartum transition diet had positive effects on milk
and milk protein yield. The increase in production reported between minimal exposure
(3 days or less) and optimal exposure (22 days for milk yield and 25 days for milk pro-
tein yield) was approximately 3.75 L of 4.0% fat and 3.2% protein corrected milk per
day and 100 g of milk protein per day (Figs. 4 and 5). DeGaris and colleagues7 also
found that exposure to the transition diet increased risk of conception by 1.2% per
day on the transition diet. This effect is large and is shown in Fig. 6, showing the cu-
mulative pregnancy rate for cows exposed to the diet for less than 10 days, those
exposed for 10 to 20 days, and those cows exposed for more than 20 days. Numer-
ically, more cows were in calf at the end of the mating periods for cows with greater
exposure to the transition diet.
Putting it all Together: Troubleshooting/Formulating: a Checklist

The following guidelines are useful when formulating or troubleshooting transition di-
ets and management. Given the multivariable nature of the disorder and other benefits



Table 2
Dietary sources, active forms, sites of action and type of action of antioxidants in cattle

Dietary Inputa Biologically Active Antioxidant Site of Action Type of Action

Selenium GSHPx IC/membrane ROOH, H2O2

Copper Cu/Zn superoxide dismutase IC O2
�

Caeruloplasmin EC Binds Cu/oxidizes Fe,
weak O2

� scavenger
EC superoxide dismutase EC O2

�

Zinc Cu/Zn superoxide dismutase IC O2
�

EC superoxide dismutase EC O2
�

Metallothionine EC Binds metal ions

Manganese Mn superoxide dismutase IC O2
�

Iron Catalase IC H2O2

Transferrin EC Binds Fe
Lactoferrin EC-milk/sweat Binds Fe

Cobalt Vitamin B12

Vitamin E a-Tocopherol Membrane Blocks peroxidation
in lipids especially

Vitamin A Retinol EC Maintains cell integrity

b-Carotene b-Carotene Membrane Scavenges singlet O2

Retinol EC Cell integrity

Glucose Ascorbate EC Vitamin E, GSSG reduction,
radical scavenger

Sulfur amino
acids

GSSG IC Replenishes GSHPx

Protein Albumin EC Binds Fe and Cu
Hemopexin EC Binds Fe
Haptopexin EC Binds Fe
Histidine-rich glycoproteins EC Binds other metal ions
Erythrocytes EC Transport radicals IC
Mucins EC OH$ Scavenging

Abbreviations: EC, extracellular; GSHPx, glutathione peroxidase; GSSG, glutathione; H2O2, controls
hydrogen peroxide; IC, intracellular; NIR, near infrared spectroscopy; O2

�, controls superoxides;
OH$, controls hydroxyl radicals; ROOH, controls lipid peroxides.

a Limiting dietary component.
Data from Lean IJ,WestwoodCT, RabieeAR, et al. Recent advances innutritionand reproduction in

temperate dairy management. In: Webber W, ed. Proceedings of the Society of Dairy Cattle Veteri-
narians of the NZVA Annual Conference. Palmerston North, New Zealand: VetLearn Foundation,
1998. p. 87–118.
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of correct transition diets, care should be taken not to crudely apply rules of thumb,
but to evaluate the diets in total.

1. Analyze available feeds for macromineral content using wet chemistry methods.
NIR can be unreliable for determination of mineral composition of forages in
particular. Analyze feeds to allow macronutrient balancing. Comprehensive and
cost-effective feed testing can be performed (eg, using an accredited laboratory
from http://www.foragetesting.org [National Forage Testing Association]).

2. Select feed ingredients that have a low DCAD (<20 mEq/100 g DM). Of particular
importance are forages that are low in K (<2.0%) and possibly Ca Select forages,
which allow adaptation of the cow’s rumen to the early lactation diet. Forages
(hays/silages) or paddocks may need to be specifically grown or prepared for tran-
sitioncowsand receiveminimal potassium-based fertilizersormanureapplications.

http://www.foragetesting.org
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3. Formulate ration to deliver a positive energy and protein balance without placing
cows at risk of acidosis; consider strategies that minimize this risk (eg, limiting
NFC [non fibre carbohydrate] to 36% and ensuring the NDF [neutral detergent
fibre] is at least 30% of DM, and physically effective fiber is at least 24% of
DM). Do not use straw or poor-quality hays as a significant source of forage,
because energy density is insufficient for maintenance.

4. Include 500 to 1000 g of a commercial mineral acid-treated feed (eg, BioChlor) to
provide chloride and sulfur and to increase microbial protein production.

5. Calculate DCAD; aim for less than 0 mEq/100 g DM.
6. Balance Na for requirements; target 0.12% DM.
7. Balance S (to ensure substrate for microbial protein synthesis); target 0.4% DM,

but be cautious with higher concentrations, because it is possible that high dietary
S concentrations place cows at risk of polioencephalomalacia. Use MgSO4 up to
80 g/cow.
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8. Balance Mg; target is 0.4%. DM: if Mg concentration is still low, add MgCl2 (up to
a combined inclusion rate with MgSO4 of 100 g/cow). If Mg is still needed, balance
with MgO.

9. Balance Ca concentration if necessary using CaSO4, CaCl2, or limestone. This
strategy is rarely necessary because Ca concentration needs to be kept around
0.5 to 0.6% DM. Beware: Ca can occasionally be high in cereal hays. Consider
increasing the Ca concentration of the diet only if it is extremely low (<0.25%)
because these diets may result in significant depletion of bone stores, particularly
if cows are spending an extended time on an acidifying transition diet.

10. Check P concentration; target is around 0.3 to 0.35% P. Additional sources of P
are rarely required. High P feeds may need to be reduced in diet.

11. Check K concentration; this should be at least 1.1% to allow for daily require-
ments of the cow. As an approximate guideline, the K concentration should be
about 4 times the Mg concentration. If this ratio is higher (ie, K > 1.6%) consider
reducing the high K feeds in the diet.

12. Check Cl concentration; the Cl concentration of the diet is ideally about 0.5%
lower than the K concentration.

13. Check DCAD; this should now be around –10 mEq/100 g DM. If DCAD is greater
than 0 mEq/100 g DM, go back to step 2 and start again.

14. Balance ration for trace minerals and vitamins. Meet or moderately exceed NRC
requirements for micromineral needs and vitamins.

15. Ensure

a. Adequate access to concentrates and hay/silage sources to minimize compe-

tition; a minimum of 75 cm of linear trough space per cow is required
b. Thorough mixing of acidogenic salts or acidifying feeds
c. Pasture intakes are estimated as accurately as possible taking into account

daily growth
d. Heifers are integrated into transition herd at this stage to minimize competition

after calving or are kept in a separate string
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e. As many as possible of the postcalving feed ingredients are included in the
precalving diet

f. Avoid feeding transition diets through dairy parlors; this can result in unsatis-
factory intake in some cows and increases risk of mastitis in some herds by
stimulating mammary letdown; cows fed in dairies should have teat spray
applied.
16. Monitor the effectiveness of the DCAD aspects of the transition diet by measuring
urine pH targets should be 6.2 to 6.8 for Holsteins and 5.8 to 6.3 for Jerseys. Urine
pHs less than 5.8 suggest excessive metabolic acidosis that compromise cow
health. The aim is to prevent milk fever and not necessarily reduce urine pH. Mea-
sure and analyze feeds in preference to testing urine (if you can choose to do only
one or the other, getting the diet correct is more critical).

17. Aim to have cows on a transition diet for 21 days.
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