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Abstract

The soil mantles the land, except where there is bare rock or ice, and it varies more or less
continuously. Many of its properties change continuously in time, too. We can measure the soil at
only a finite number of places and times on small supports, and any statement concerning the soil
at other places or times involves prediction. Variation in soil is also complex, so complex that no
description of it can be complete, and so prediction is inevitably uncertain. Soil scientists should
be able to quantify this uncertainty, and manage it. This means representing the variation by
models that may be in part deterministic, but cannot be wholly so; they must have some random
element to represent the unpredictable variation. Here we review three families of statistically
based models of soil variation that are currently in use and trace their development since the
mid-1960s. In particular, we consider classification and geostatistics for modelling the spatial
variation, time series analysis and physically based approaches for modelling temporal variation,
and space–time Kalman filtering for predicting soil conditions in space and time simultaneously.
Each of these attaches to its predictions quantitative estimates of the prediction errors. Past,
present and future research has been, is, and will be directed to the development of models that
diminish these errors. A challenge for the future is to investigate approaches that merge process
knowledge with measurements. For soil survey, this would be achieved by integration of
pedogenetic knowledge and field observations through the use of data assimilation techniques,
such as the space–time Kalman filter.q2001 Elsevier Science B.V. All rights reserved.

Keywords: Soil; Spatial variation; Temporal variation; Modelling; Soil classification; Geostatis-
tics; Time series; Kalman filter

) Corresponding author.
Ž .E-mail addresses: g.b.m.heuvelink@frw.uva.nl G.B.M. Heuvelink ,

Ž .richard.webster@bbsrc.ac.uk R. Webster .

0016-7061r01r$ - see front matterq2001 Elsevier Science B.V. All rights reserved.
Ž .PII: S0016-7061 01 00025-8



( )G.B.M. HeuÕelink, R. WebsterrGeoderma 100 2001 269–301270

1. Introduction

The soil varies from place to place, and many of its properties vary in time
too. This is what makes the soil so fascinating. We place the variety we observe
on record, and we seek explanation for it. Were the soil uniform, we should
simply acknowledge the fact and switch our attention to something more
interesting. On the practical level that same variety can be both a nuisance, in
that we have to modify our land management to cope with it, and an asset in
providing diverse habitats for a rich flora, both wild and cultivated, and
resilience against stress and fluctuations in weather and climate.

Because the soil varies, sampling the soil at a finite number of places or
points in time yields incomplete pictures. Often we need to predict between
sampling points. For instance, we may need to interpolate in space to construct a
map of a soil property. We may need to predict ahead in time to compare the
effects of different scenarios or management practices. Prediction requires us to
create models of the real world and apply them. In some cases, such models
may be implicit only, as when a soil surveyor maps the soil with a conceptual

Ž .model of soil variation in mind Schelling, 1970; Dijkerman, 1974 . Other soil
scientists use models of soil variation more explicitly. For instance, computer-
based simulation models are used to predict the movement of water and the

Žleaching of solutes in the soil Van Genuchten and Dalton, 1986; Addiscott,

Table 1
General properties of the statistical models of soil variation reviewed

Type of model Temporal Spatial Primary source Significant
variation variation of information introduction

to soil
science

Soil classification ignored discrete pedology 1960s
representation

Soil geostatistics ignored continuous observations 1980s
representation

Classification ignored discrete and pedology and 1990s
merged with continuous observations
geostatistics representation
Time series included ignored observations 1990s
analysis
State–space included ignored physical laws 1990s
approach and observationss
Space–time included included observations 1995q
geostatistics
Spatial state– included included physical laws 2000q
space approach and observations
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.1993 . A geostatistician models soil properties as if they were realizations of
Ž .random fields Webster, 2000 .

Regardless of how he or she predicts, a soil scientist assumes some kind of
model of how the soil behaves in space and time. There may be huge differences
between these models, but what they all have in common is that they involve
some degree of uncertainty. Soil varies at all scales with great complexity, and
there is no way that we can capture the full extent of its variation in a
deterministic model. Statistical models recognize the associated uncertainty, and
these models are the focus of this paper.

In this review we give a historic account of models of soil variation since the
mid-1960s when computers sparked their quantitative development and assess-
ment. We mention their successes in the past, we identify their merits and
weaknesses in the present, and we speculate on future developments. We first
discuss models of soil spatial variation, next address models of soil temporal
variation, and last analyse models that treat soil spatio-temporal variation in an
integrated fashion. Properties of the various models discussed are summarized in
Table 1.

2. Soil spatial variation

Two principal approaches to representing spatial variation in soil can be
distinguished. One, the earlier, has its roots in intuition overlaid with 19th
century biological taxonomy and practice in geological survey, to which it was
related. It partitions the soil into more or less discrete classes. The other sees
soil as a suite of continuous variables and seeks to describe the way they vary
over the land. It is necessarily quantitative and it embodies fairly advanced
statistical theory. It also requires powerful computers, and so it had to await
their coming.

It turns out that both approaches can be cast into a general model of spatial
variation, each incorporating their specific assumptions. Recently, we have seen
several attempts, with some success, to merge the two approaches into models
that more realistically represent the real world.

Incidentally, we use the word ‘variation’ to describe the actuality rather than
‘variability’, which we reserve to mean the potential to vary, as in random
processes. This accords with the distinction between ‘variate’ to signify a set of
values of a ‘variable’, which in soil science is a property of the soil—see

Ž . Ž . Ž .McBratney 1992 , Burrough 1993a or Webster 2001 for a fuller explanation
and rationale.

2.1. Soil classification— the Dark Ages

Soil classification involves dividing the population of all soil into more or
less discrete classes. In the spatial context, the classes are subdivisions of finite
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circumscribed regions. The boundaries are sharp lines across which the observed
differences are greater than elsewhere and within which the soil is relatively
homogeneous. For any one region, the outcome is a map showing the region
tessellated into spatial classes, which constitute a general-purpose classification.
This usually is accompanied by a text in which the classes are described. There
are thousands of examples.

Traditionally, such a map was made by the soil surveyor using his or her
intuition and formal knowledge and understanding to collate all the information
available on the soil and its relations with geology, geomorphology, vegetation,
and land use. It involved observation in the field and latterly air photo
interpretation. It required few expensive observations and laboratory analyses.
The soil of the classes created was described from typical sites, which were
chosen by the soil surveyors using judgement based again largely on intuition.
Variation within the classes was acknowledged, but was described qualitatively
and then usually in only vague terms. There was no formality, no quantitative
expression of variation.

2.1.1. Statistical aspects of spatial classification and predicting from soil maps
By the 1960s, taxonomists were putting numerical limits on the discriminat-

ing criteria for consistency. This helped to codify description, but it did not
obviously aid prediction with the uncertainties it entailed. Soil classification
must be treated statistically to take into account the variation remaining within
the classes and the consequent uncertainty.

Civil engineers provided the stimulus to put soil classification on a formal
statistical basis. They wanted to build rural roads and airfields, often in remote
areas, with the natural soil as the foundation. They could sample the soil, but
only sparsely. Elsewhere they would have to predict. Morse and Thornburn
Ž .1961 saw a potential solution to the problem of prediction in soil maps made
for agricultural purposes. They reasoned that if the variation within the classes
was less than that in a region at large then using the class means of the
properties of interest as predictors should be more precise than the regional
means. Further, if they sampled with a sufficient element of randomness, and
provided the data seemed to follow some theoretical distribution, ideally normal,
then they could put their predictions on a probabilistic footing. And so they
investigated the possibility. They took a soil map of a part of the Mid-West of
the USA made by the US Department of Agriculture, sampled it with a stratified
random design, treating the mapped classes as strata, and measured the amounts
of sand, silt and clay, and Atterberg limits at several depths. They estimated the
means and variances of the properties from the resulting data. The predictors
would be the estimated stratum means, and the errors of prediction could be
determined simply from the within-stratum variances. Kantey and Williams
Ž . Ž .1962 and Webster and Beckett 1970 took the same line of argument, but with
greater purpose in that they made their own maps and tested them. All achieved
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some success in that the variance within the classes was less than in the
landscape as a whole, and so one could predict more precisely with the map than
without it. This idea has been pursued many times since and is still used and

Ž .investigated to this day e.g. Oberthur et al., 1996; Brannon and Hajek, 2000 .¨
The investigators’ analysis was rooted in classical statistics, or design-based

Ž .estimation, which Brus and De Gruijter 1997 have done much to promote
recently. In this approach a soil propertyz takes values at an infinity of points

� 4xs x , x within a domain or region of interestDD. These values comprise the1 2

population. The region is divided intoK spatial strata,DD , ks1, 2, . . . ,K, thatk

are mutually exclusive and exhaustive. In what follows, the terms ‘class’ and
‘stratum’ are used as synonyms. If the region is then sampled at random, then
the value at any point in stratumDD is predicted by the mean of thek

observations inDD . Class-based prediction can also be cast in a model-basedk
Ž .setting Heuvelink, 1996 , and we do that here. We now treat the soil property

Ž .as a random variable, and denote it byZ x . We use a capitalZ to signify that
the soil property is random. It satisfies the following model:

K

Z x smq d x a q´ x , 1Ž . Ž . Ž . Ž .Ý k k
ks1

Ž .wherem is the global mean,a is the mean deviation ofZ x within stratumk
Ž .DD from the global mean, andd x is a binary function taking the value 1 fork k

Ž .xgDD and 0 elsewhere. The residual´ x represents the within-class variation,k

which has zero mean and varianceC , and which in addition is spatially0
Ž . Ž .uncorrelated white noise . We term Eq. 1 thediscrete model of spatial

variation.
If the model is to have any merit, then the variance within the classes must be

less than the total variance. Thus, it is desirable forC to be a small proportion0
Ž . Žof the total, so that there are large jumps inZ x at the class boundaries Voltz

.and Webster, 1990 . Many individual properties of the soil depend on soil type
and so application of the discrete model of spatial variation, whereby the
conventional soil map is used to partition the region, often proves to be

Žsuccessful Beckett and Burrough, 1971; Van Kuilenburg et al., 1982; Wosten et¨
.al., 1985; Yost et al., 1993; Kern, 1994 . This is illustrated in Fig. 1.

Ž . Ž . Ž . Ž .Suppose that we have observationsz x , z x , . . . ,z x of Z x that1 2 n
Ž .satisfy Eq. 1 with the global meanm and a unknown. Assume that of thesek

observations the firstn are in class DD and the remainder are not. It thenk k
Ž .makes sense to use the mean of then observations to predictZ x at any xk 0

within DD :k

nk1
Ẑ x s Z x . 2Ž . Ž . Ž .Ý0 ink is1
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Ž .Fig. 1. Three realizations of a soil property satisfying Eq. 1 . Left: small; middle: moderate; and right: large within-class spatial variation.
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Ž .If we lack other information, then Eq. 2 is our best linear unbiased predictor
for any unsampled place. The corresponding prediction error variance is given
by

1
2 ˆs x sVar Z x yZ x sC q C . 3Ž . Ž . Ž . Ž .0 0 0 0 0nk

In words, the prediction error variance is composed of the residual variance in
the population plus the estimation variance of the class mean. So, the uncer-
tainty in our prediction arises from the inherent variation in the soil swollen by

Ž .our uncertainty in our estimate of the mean. Evident from Eq. 3 is that we can
diminish the uncertainty in the mean as much as we like—until it is negligible if
we have sufficient resources—by increasing our sampling. In the limit, how-
ever, we are left withC , which no amount of sampling at this stage can affect.0

Prediction in the situation of the map to the right in Fig. 1 will yield large
prediction error variances, no matter how large a sample we take. If we are to
improve prediction any further, then we must change the classification so that
each class encompasses less variation. Clearly, in the example situation of the
map to the right in Fig. 1, this will not be possible, but in the real world one
may hope for better classifications with smaller within-class variances.

Seen from a statistical point of view, this was the rationale for the immense
effort devoted to soil classification and its refinement in the 1960s. The
taxonomists attempted to improve the effectiveness of classifications by dividing
soil into ever finer classes. Surveyors tried to apply in the field the refined
classifications of the taxonomists, only to discover that the more narrowly were
the classes defined the harder it was to identify them and the less ‘pure’ were
their soil maps. They were forced to compromise. Further, in using data from
records of classes defined on soil profile alone they added to the uncertainty of
their spatial predictions the uncertainty arising from the ‘impurity’ of their

Ž .mapped classes. Butler 1980 , however, took a more robust attitude. As he saw
it, they were going about their business in the wrong order. He made abundantly
clear that successful classification of soil at the local level must represent what
can be mapped at the chosen scale and is determined by the local landscape.
Surveyors should therefore map the boundaries first, then see what they have
captured and describe it. Here was no question of impurity; the map was
definitive, and it remained only to sample its classes to provide statistical
descriptions.

The matter was investigated at length and in detail by Beckett and co-workers
Ž .Webster and Beckett 1968 had laid the foundations for evaluating soil maps by

proposing the intra-class correlation as a basis for comparison. If the intra-class
correlation were 1, then the classification would be perfect, there would be no

Ž .variation left within classes, i.e.C s0 . At the other end of the scale, a0
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classification for which the intra-class correlation equals 0 would represent no
advantage on no classification.

Ž .Beckett and Burrough 1971 , in one of the most significant applications of
the ideas, compared the effect of classification at several scales and intensities of
observation in three distinct regions of England. Although they did observe
improvements in some cases, overall, increasing the intensity of observation to
refine the maps produced small benefits. The classification into soil series
devised for publishing maps at 1:63 360 and delineated at that scale was almost
as good as the more detailed delineations at the finer scales.

With hindsight, we can now guess the main reason: the within-class residual
had a much shorter correlation range than the intervals between observations in
these surveys. However, it was probably not the only reason. The authors did
not take advantage of the larger scale to create finer subdivisions that might be
mapped at the finer scales. Had they done so they might have found less
variation within the classes.

Several other soil scientists pursued this line of investigation. Recently,
Ž .Leenhardt et al. 1994 gave a full account of the logic and theoretical

evaluation of the approach. In their paper, the authors focus in particular on
Ž .optimizing the sample size and on how to handle preferential representative

sampling statistically.
We might summarize conventional soil mapping, choropleth mapping to give

it its technical name, as follows. It is quick and cheap, especially if there are
close relations with physiography and land cover and use can be made of aerial
photography, and it is likely to be moderately effective. Improving the efficacy,
however, requires much more effort to recognize more subtle distinctions and
delineate more intricate boundaries, and the rewards are likely to be small. Other
shortcomings include weak correlation between some soil properties, especially
chemical constituents and fractions, and the mapped classes, the representation
of gradual change by abrupt boundaries, and the treatment of within-class

Žvariation as spatially uncorrelated Webster and Cuanalo, 1975; Nortcliff, 1978;
.Campbell et al., 1989; Nettleton et al., 1991 . Dealing with these requires a

different view of the soil, one that recognizes the continuity rather than the
discontinuity.

2.2. Age of enlightenment— soil geostatistics

Geostatistics was introduced into soil science some 20 years ago as an
alternative to classification for representing spatial variation. Burgess and Web-

Ž .ster 1980 were the first to use kriging, its practical application, in soil survey,
and many other pedologists and environmental scientists have followed in their
wake. There are now several excellent accounts of geostatistics and its underly-

Žing theory written for soil scientists e.g. Goovaerts, 1997, 1999; Webster and
.Oliver, 2001 , and so we repeat only the basic principles here.
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Ž .Fundamental to geostatistics is the concept of a variableZ x that is both
random and spatially autocorrelated. In its simplest form, the model is

Z x smq´ x , 4Ž . Ž . Ž .
Ž . Ž .wherem is the mean, and́ x is a random residual. Whereas in Eq. 1 we

assumed the residuals to be uncorrelated, we now recognize explicitly spatial
correlation in them, and we express it quantitatively by the semivariance:

1 12 2
g h s E Z x yZ xqh s E ´ x y´ xqh , 5� 4 � 4Ž . Ž . Ž . Ž . Ž . Ž .

2 2
where E signifies expectation, andh is a vector separating two pointsx and
xqh.

Ž .Eq. 4 is termed thecontinuous model of spatial variation. In contrast to the
discrete model, there is no subdivision ofDD.

Ž .In Eq. 5 , one implicitly assumes that the semivariance depends only on the
separationh and not on the positionsx and xqh. This assumption is often

Ž .made to facilitate its identification from observations ofZ x . The function
relating semivariance to the lag,h, is the semivariogram, nowadays usually
shortened to just the variogram. Spatial dependence manifests itself in the
variogram typically by a monotonic increase from the origin with increasing lag
distance. In other words, near points are more similar to one another on average

Ž .than ones further apart. The variogram may reach an upper bound its ‘sill’ at a
Ž .finite distance the ‘range’ , beyond which there is no longer spatial autocorrela-

Ž .tion. Alternatively,g h may approach its maximum asymptotically. Both kinds
of bounded variogram are characteristic of second-order stationary processes and
have their equivalent autocovariance functions:

C h sE Z x ym Z xqh ym sC 0 yg h , 6Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .
Ž . Ž .whereC h denotes that autocovariance at lagh, andC 0 , the autocovariance

at lag zero, is the variance of the process.
Although the variogram of a continuous process must pass through the origin,

we often find in practice that it appears to have a positive intercept on the
ordinate. This is known as the ‘nugget variance’, a term from mining and
signifying an uncorrelated component of variation such as that caused by rare
gold nuggets in an ore. Random measurement errors also contribute to the
nugget variance.

Ž .The variogram as expressed in Eq. 5 is that of the random process. We need
Ž .it to predict Z x between our sampling points, see below. We must therefore

estimate it, and we usually do so by fitting a function to the experimental
variogram, computed from the observations. Modern practice is to fit the
variogram parameters by minimizing the sums of squares, suitably weighted,
between the experimental values and those of the model, as recommended by

Ž . Ž .Cressie 1993 and Lark 2000a . Other variogram estimation methods have
Ž .been tried as well, such as maximum likelihood estimation Lark, 2000b .
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A soil scientist soon learns to recognize from the variogram the spatial
characteristics of a soil property. Fig. 2 shows this with realizations of a variable

Ž .satisfying Eq. 4 with three contrasting variograms. He or she should be wary,
Ž .though. The variogram characterizes only the second-order moment ofZ x ; it

does not capture higher-order moments. This is fine for normally distributed
Ž .Gaussian processes, such as those shown in Fig. 2, where the higher-order
moments are determined by the lower-order moments. But in the general
situation, realizations of random processes can look very different from one
another even when their variograms are the same.

Let us turn to the prediction for which we have computed the variogram.
Ž . Ž .Given point observationsz x , is1,2, . . . ,n, we can predictZ x at ani 0

unobserved placex as the linear weighted sum:0

n

Ẑ x s l Z x , 7Ž . Ž . Ž .Ý0 i i
is1

Ž .in which thel are weights. This is much the same as Eq. 2 ; the difference isi
Ž .that whereas the weights in Eq. 2 were either 1rn or 0, now they may takek

values from a continuous range. As before, the weights are chosen such that
they minimize the prediction error variance, provided they sum to 1 and thereby

Ž .ensure that prediction is unbiased. The differences between the models 1 and
Ž .4 cause differences in the weights obtained.

The prediction error variance is

n n n
2s x s2 l g x yx y l l g x yx . 8Ž . Ž . Ž . Ž .Ý ÝÝ0 i i 0 i j i j

is1 is1js1

It represents the uncertainty in the prediction. Where there is spatial dependence,
the semivariance tends to increase with increasing distance from observations.
So, in general, the error decreases with the density of data and not just with the
total number of them, as under the discrete model of spatial variation.

Kriging minimizes the prediction error varianceif the model is correct.
Similarly, the prediction is unbiased in terms of the model. If the model is
wrong, which it always is to some extent, then the prediction is not optimal.
However, the predictions themselves are little affected by the choice of model,
provided it is reasonable, and this is one of the strengths of kriging—it is robust
in this sense. The variances can be seriously affected, however.

The introduction of kriging to soil science resulted in a major shift in
attention. Since 1980, kriging has found many and diverse applications, as in
pollution, fertility, trace element deficiencies and salinity. In many instances, the
need has been to map these. Also, geostatistics has not stood still during that
time. There have been numerous developments and refinements, which have
been essentially extensions to the basic principle. Some deal with non-normality
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Ž .Fig. 2. Three realizations on a 100=120 rectangle of a stationary Gaussian random process satisfying Eq. 4 with a spherical variogram,
Ž . Ž . Ž . Ž . Ž .g h sc qc=sph a . Left: zero nugget c s0 and small rangeas20 . Middle: 30% nugget variance, i.e.c s0.3 c qc , and small range0 0 0 0

Ž . Ž .as20 . Right: 30% nugget variance and moderate rangeas60 .



( )G.B.M. HeuÕelink, R. WebsterrGeoderma 100 2001 269–301280

Ž .lognormal kriging, disjunctive kriging, indicator kriging , others address non-
Žstationarity, i.e. varying trend or drift universal kriging, kriging with external
.drift, irf k kriging, and stratified kriging .

One elaboration worth specific mention is block kriging; this allows predic-
tions for areas larger than the supports on which the observations were made.
The ‘support’ in this context is the size of the body of material, its length,
breadth and thickness, and its orientation. Block kriging is useful where
measurements are made on small cores of soil yet predictions are required for
large swaths of land, as when a farmer applies fertilizer in bands typically 24 m
wide. It requires only little modification to the kriging equations, see for

Ž .example Webster and Oliver 2001 . Due to an averaging-out effect, block
kriging variances are typically much smaller than the corresponding point
kriging variances. However, this in itself is not a valid reason for preferring
block kriging over point kriging. The choice between point and block kriging
should be based solely on whether one is interested in values on the same
supports as the data or in block averages. These variables are not the same, and
neither are their variograms. Indeed, the values that a soil property takes and its
spatial pattern can be strongly influenced by the support. This is illustrated in
Fig. 3, which shows that increasing the support size decreases the amount of
spatial variation in the data. This is due to a spatial averaging. Fig. 3 also shows
that different support sizes may yield different spatial patterns. The pattern on

Ž .the point support left map in Fig. 3 is dominated by the short-range nugget
Ž .effect, whereas the spatial pattern of the 1=1 block map middle map reflects

a combined effect of the spatially correlated part of the stochastic residual and
Žthe long-range trend. The spatial pattern of the 10=10 block support map right

.map is influenced almost entirely by the long-range trend.
Much more has been written about the support and how it affects the

Žaccuracy of predictions in soil science Heuvelink and Pebesma, 1999; Bierkens
.et al., 2000; Lark, 2000c , but we cannot pursue the subject further here.

One development that has become popular in the last decade in soil science is
stochastic simulation of spatially distributed soil properties. Its aim is to
compute realizations of the random process, given the variogram and usually
given the data too. Such simulated realizations preserve the correlation structure,
whereas kriging smoothes, i.e. loses variance. A map of a realization looks like
reality. The process is swift on a modern computer, and so we can see many
such possible maps in a little time. Conditional simulation, whereby we incorpo-
rate the data, enables us to get a feel for the uncertainty in our picture of reality
and allows us to carry out an uncertainty analysis; perhaps this is its main
purpose. There is a price, namely a doubled prediction error variance, but then
optimal prediction is not the aim of the simulation. Incidentally, the means of
repeated conditional simulations converges to the kriging predictions as the
number of simulations increases, as does the variance in the simulated realiza-
tions converge to the kriging variance.
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Ž . Ž . Ž .Fig. 3. A realization on a 100=120 rectangle of a random function satisfying Eq. 4 withms32y0.05xy0.10y and g h s10q10=sph 10 ,
Ž .viewed at three different supports. Left: point support. Middle: block support with blocks the size of the pixels i.e. 1=1 units . Right: block support

Ž .with blocks the size of 100 pixels i.e. 10=10 units .
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2.3. Merging classification with geostatistics

Both classification and geostatistics have their disadvantages. Neither can
handle situations in which both abrupt and gradual spatial variation are present
in the same region. Once soil scientists had overcome their kriging ‘euphoria’
Ž .in the early 1990s , they started to realize that abandoning conventional
classification outright was not so sensible after all. Ordinary kriging also had
disadvantages, such as its inability to deal with sharp boundaries, though no one

Ž .so far has tried to adapt Marechal’s 1984 technique for handling geological
faults, as far as we know.

The renewed recognition for classification led to studies in which the
performance of the discrete and continuous model were compared. These studies

Ždate mainly from the 1990s Yost et al., 1993; Brus et al., 1996; Utset et al.,
. Ž2000 , although the first of its kind was done earlier Van Kuilenburg et al.,
.1982 .

Comparison was one possibility, but merging the discrete and continuous
models of spatial variation was a more challenging task. To bridge the gap
between the two, several models have been proposed. Rogowski and Wolf
Ž .1994 proposed unweighed averaging of the predictions from the discrete and

Ž .the continuous model. Heuvelink and Bierkens 1992 weighed these predictions
using weighting factors derived from the prediction error variances. These are
essentially heuristic approaches, though. Another method was to stratify the area

Žand adopt the continuous model separately in each stratum Stein et al., 1988;
.Voltz and Webster, 1990 . The disadvantage of this is that it excludes any

spatial autocorrelation across the boundaries. One solution to this problem is to
Ž .replace crisp boundaries by gradual transition zones Boucneau et al., 1998 .

Ž .Heuvelink 1996 suggested the mixed model of spatial variation, in which the
soil property is treated as the sum of a global mean, a class-dependent deviation
from the mean, and a spatially correlated residual. Prediction with this model

Ž .boils down to kriging with an external drift Delhomme, 1978 , which in this
case is a classification. Its main advantage is that it performs well over the
whole range of spatial variation, from exclusively discrete realities, such as in

ŽFig. 1, to exclusively continuous realities, such as in Fig. 2 Heuvelink and
. Ž .Huisman, 2000 . Goovaerts and Journel 1995 used an indicator approach to

integrate soil map information into modelling the spatial variation of continuous
soil properties.

One other approach that aims to escape from the abrupt boundary assumption
of conventional soil classification is based on fuzzy set theory. This approach

Žled to a method known as ‘continuous classification’ Burrough, 1989; De
.Gruijter et al., 1997 . The key property of continuous classification is that

objects need not belong to one class only. Instead, an object can be a member of
multiple classes, with class-specific membership values that sum to 1. Applica-
tion to soil mapping then means that a gradual transition from one soil type to
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another is represented by the gradual decrease and increase of membership
values, as one moves across the boundaries between soil strata. Strictly speak-
ing, the model underlying continuous classification is not a statistical model. It
does not assess the accuracy of its predictions. Fuzzy set theory deals with
possibilities instead of probabilities, although the subtle distinction between the

Ž .two is a constant source of confusion Fisher, 1994 . One other source of
confusion is that fuzzy set theory and statistics are both used for representing the

Ž .uncertainty of soil information McBratney, 1992 .
Improvements to approaches that aim to combine soil survey information

with continuous observations are foreseen. Particularly promising in this respect
seems to be a related research area known as ‘landscape-guided’ soil mapping.
Here landform and environmental attributes such as parent material, local relief,
upstream area and vegetation serve as additional information in the kriging.

ŽSeveral recent examples explore this line McKenzie and Austin, 1993; Odeh et
al., 1994; Bourenanne et al., 1996; Lark, 1999; McKenzie and Ryan, 1999;

.Thomas et al., 1999; Lagacherie and Voltz, 2000 . The success of the method
depends on the strength of the relations between soil and landform. These
relations are often found to be weak, but through a wise choice of plausible
explanatory variables the approach might lead to substantial progress in the
future.

3. Soil temporal variation

Many properties of the soil vary in time. Water content and potential,
strength, and concentration of solutes come most immediately to mind. In fact,
one might argue that every soil property changes in time. It is just that some
change so slowly that for practical purposes we treat them as invariant in the
time with which we are concerned. For instance, particle-size distribution is
unlikely to change much over tens of years, but when we consider thousands of

Ž .years as we should when thinking of soil genesis we can no longer assume it to
be constant.

The models that people have used for temporal variation differ from those for
variation in space, although there are similarities too, as we shall see. As it
happens, the soil scientists who have tackled the two have hardly communicated
with one another. This is both remarkable and unfortunate, because they produce
ideas that should be useful to one another.

One of the main reasons that models of spatial and temporal variation are
tackled differently is that the time dimension is different from the dimensions of
space. It is more than just one dimension against two or three. Time has a
direction, it moves forward only, processes take place in a sequence, and
prediction is interesting only for the future, though occasionally we may wish to
interpolate if we lose observations or have data that are too sparse. Also, the
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laws of continuity and of the conservation of mass and energy must be obeyed
in time, and they are so well known that it would be foolish to ignore them.
Similar information cannot be used in a purely spatial setting. Thus, one big
class of suitable models relies heavily on knowledge of process in time. Before
dealing with these models, however, we discuss a second class that does bear
relation to those of spatial variation discussed in the previous section. These are
models stemming from time series analysis.

3.1. Time series analysis

If we were to measure a variable, such as the water content or matrix suction
of the soil, at a certain place at regular intervals in time, then we should obtain a

Ž .series of observationsz t , is1,2, . . . ,n. In some situations this discrete timei
Ž .series of observations would be a sufficient description. But to predictz t at

some future time, or perhaps interpolate between time points when our measur-
ing device failed, we should need a model characterizing the dynamic behaviour

Ž . Ž .of z t . One of the earliest examples of which we know is that of Forbes 1846 ,
who fitted a deterministic sine wave to data on soil temperature over several
years. In time series analysis, which has its foundation in engineering, an
empirical statistical approach is used. In the simplest case, the measured series is

Ž .treated as the realization of a stationary random processZ t satisfying

Z t smq´ t , 9Ž . Ž . Ž .
Ž .in which m is the global mean as before and´ t is a temporally autocorrelated

random residual with a mean of zero and variance characterized by its autoco-
Ž . w Ž . Ž .xvariance functionC s sCov ´ t ,´ tqs , wheres denotes the lag. Note the

resemblance here with geostatistics discussed in Section 2.2; the main difference
is that now the lag is one-dimensional in time, whereas previously it was a
vector in two and potentially three dimensions. Note also that the statistical

Ž .properties ofZ t again depend on the support. The averaging effect mentioned
in Section 2.2 is as valid in the temporal domain as in the spatial domain. Thus,
the temporal support with which a soil variable is observed must be chosen
wisely. For instance, measuring and modelling the nitrate concentration of the
topsoil on an hourly support implies that short-term factors such as weather will
have an effect on the concentration and should therefore be incorporated in the
modelling. The effect of weather will be much less strong when the chosen
support is the mean annual nitrate concentration.

Estimates of the autocovariances are typically plotted against the time lag,
and these graphs give as much insight into the temporal behaviour as do the
variograms in a spatial context. In soil science applications, it is more common

Žsimply to present graphs of the soil variable against time Comegna and Vitale,
1993; Renschler et al., 1999; Van Es et al., 1999; Wendroth et al., 1999a;

.Knotters and Bierkens, 2001 .
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Ž .Direct fitting of authorized functions to plotted autocovariances is legiti-
mate, but time-series analysts often take a somewhat different route to obtain the
autocovariance function. They assume that the random process belongs to a
specific class of processes, such as the class of auto-regressive moving-average
Ž .ARMA processes. The simplest model of this class is that of a first-order
autoregression:

Z t smqa Z ty1 ym q´ t , 10� 4Ž . Ž . Ž . Ž .
Ž .where a is a regression parameter, and´ t is now an uncorrelated random

Ž .residual. In other words, the temporal autocorrelation ofZ t is defined through
Ž .the recurrence relation in Eq. 10 .

Ž .Under an explicit model such as Eq. 10 , the form of the autocovariance
function is completely determined. For the first-order autoregression, the autoco-
variance function is approximately exponential, and exactly exponential when

Ž .we replace the stochastic difference Eq. 10 by a stochastic differential equa-
tion.

Although such explicit modelling is rare in geostatistics, it has been done
Ž .Baker, 1984; Matern, 1986 . The problem is two-dimensional, of course, and so´

Ž .the model must recognize this. The natural spatial analogue of Eq. 10 is the
Žfirst order spatial autoregressive model Zhang and Yang, 1996; Heuvelink,

.1998 . It yields a variogram incorporating a Bessel function, specifically the
modified Bessel function of the second kind,K , which derives from diffusion1

Ž .in two dimensions Whittle, 1954; King and Smith, 1988 . Indirect modelling of
Ž .the variogram through an explicit model such as Eq. 10 ensures that the

variogram obtained makes sense physically. This is by no means guaranteed
with conventional variogram fitting. For instance, the most commonly used

Žspherical variogram has properties that do not make much physical sense Stein,
.1999, p. 52 .

Ž .We can predict future values ofZ t or interpolate between times optimally,
Ž .given observations, based on either Eq. 9 or an explicit model formulation

Ž .such as Eq. 10 . The first leads effectively to kriging in one dimension; there is
no fundamental difference. The second formulation leads to a somewhat differ-
ent solution method, but in the end, the predictions and prediction error

Žvariances are the same as those obtained using kriging Chirlin and Wood,
. Ž1982 . This is because both use the same optimality criterion i.e. they seek the

.best linear unbiased predictor .
In time-series analysis there are many extensions to the basic model, such as

Žnon-constant trends, seasonal effects such as the deterministic sine wave fitted
Ž ..to soil temperature by Forbes 1846 , higher-order autoregressive terms, mov-

ing averages, and so on. Time-series analysis also leads conveniently into the
Ž .frequency domain by Fourier transformation. Webster 1977 and Webster and

Ž .Oliver 2001 have adapted it to space to find the frequency, and equivalently
wavelength, of what appears to be periodic fluctuation in soil across a land-
scape.
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3.2. Approaches based on physical processes

We now discuss models that describe dynamic behaviour based on physical
laws such as that of conservation of mass. This is not the place to discuss these
approaches at length. However, a brief description enables us to incorporate
these essentially deterministic approaches into our statistical framework for
modelling soil variation.

Physical–deterministic modelling of soil processes has a long history. Darcy’s
law and the laws of conservation of mass and energy were already used as

Žpoints of departure for mathematical model building in the mid-1960s Srivastava
.and Abrol, 1967 and even earlier, but the widespread use of these numerically

intensive methods had to await the modern computer. We now have many
implementations of models that can simulate processes such as the movement of

Žwater and solutes in the soil e.g. Van Genuchten and Dalton, 1986; Petach et
.al., 1991 . Likewise, we have ones to describe quantitatively the weathering and

acidification of the soil, nitrification, and so on. These models, which we
consider here under the heading of temporal models but which are strictly
speaking spatio-temporal because they also take the vertical spatial dimension
into account, share with the time-series models above the main goal of predict-
ing the future conditions of the soil. Some of them have been successful, which
explains their current popularity. Nevertheless, there are problems with calibra-
tion and validation, and these problems are particularly delicate because the
models are often developed at a scale much finer than the scale of practical

Ž .applications Addiscott, 1993; Heuvelink and Pebesma, 1999 . Also, no matter
how elaborate the model becomes, there are always substantial deviations
between the model’s predictions and independent observations. Some of this
discrepancy is caused by error in the model itself. The discrepancies between the
model and reality are too complex either to understand or to model explicitly.
They can be incorporated by our adding a stochastic residual. The soil variable
Ž .Z t then satisfies

Z t s f t q´ t , 11Ž . Ž . Ž . Ž .
Ž . Ž .in which f t represents the physical–deterministic part of the model, and´ t

is the stochastic component. Soil scientists have rarely taken this line, though we
Ž .know of examples in soil hydrology Bierkens, 1998; Russo, 1998 .

3.2.1. The state-space approach
One important benefit of adding a stochastic residual to a deterministic model

is that it allows us to decide rationally how predictions from the model may be
Ž .corrected with independent observations. Consider Eq. 11 again, which in

many cases may be formulated as

Z t sg Z ty1 q´ t . 12� 4Ž . Ž . Ž . Ž .
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This acknowledges that the state at timet depends on the state at timety1. Eq.
Ž .12 is known as the state equation. In addition, we have a measurement
equation:

Y t sh Z t qh t , 13� 4Ž . Ž . Ž . Ž .
Ž . Ž .where Y t is the measurement, andh t is the error in it. Note that the first

Ž . � Ž .4 Ž .term on the right hand side of Eq. 13 readsh Z t instead of justZ t . This is
Ž .useful to allow indirect or partial measurements of the stateZ t . For instance,

Ž .we may determine the soil water flux, denoted byZ t , indirectly from

Fig. 4. Soil water content at a certain depth in a column of soil. The solid line is the prediction
from the physical–deterministic model without conditioning to observations; the dots are observa-
tions. The dashed line is the Kalman filter, the dotted one is the Kalman smoother. Top: small
measurement error. Bottom: large measurement error.
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measurements of the soil water potential. Also, missing observations may be
� Ž .4represented by assigning the null function toh Z t .
Ž . Ž .If we know the probability distribution ofZ ty1 , then we can use Eq. 12

Ž .to predict Z t . The accuracy of the prediction will be affected by the variance
Ž . Ž .in Z ty1 and by the variance in the system noise´ t . Now, since we also

Ž . Ž . Ž .know the accuracy of the observationY t if we have any through Eq. 13 ,
we can update the original prediction with the observation and do so in a way
that optimally weighs the uncorrected prediction with the observation. This is

Ž . Ž . Ž .the essence of Kalman filtering Kalman, 1960 . Eqs. 12 and 13 constitute
what is known as the ‘state-space’ approach. Optimal prediction in this setting,
using the Kalman filter or related techniques, is nowadays also often termed

Ž .‘data assimilation’. Starting from an initial situationZ t and associated0
Ž .variance P t , the procedure moves forward one time step at the time. The0

computations involved are fairly straightforward in the usual situation where
� Ž .4 � Ž .4g Z t and h Z t are assumed linear and where the noise terms are normally

Ž .distributed Jazwinski, 1970 . There are ways to relax these assumptions, but
Ž .they typically yield approximate solutions only Schweppe, 1973 .

Kalman introduced his filter for signal processing, and it has since been used
in various scientific fields. Despite its attractive properties, the applications in

Žsoil science remain few and are biased towards soil hydrology Aboitiz et al.,
1986; Bierkens, 1998; Galantowicz et al., 1999; Wendroth et al., 1999b; Hoeben

.and Troch, 2000 . The state-space approach has also been used to identify the
Žparameters of the physical–deterministic model Katul et al., 1993; Cahill et al.,

.1999 .
The strength of the state-space approach lies in its ability to merge the

formulations of physical-deterministic models with observations. Generaliza-
Ž . Ž . Ž .tions of Eqs. 12 and 13 to include input sources and sinks from the outside

world can be easily incorporated. Also, the extension from filtering to smooth-
Ž .ing using future observations to predict the present is fairly straightforward.

Ž .Kalman smoothing has much resemblance with time series interpolation, but
Žthe advantage is that it uses both process knowledge and observations past,

.present and future to predict the present.
Fig. 4 demonstrates the principle of the Kalman filter and smoother applied to

an experiment in which the water content is measured in a column of soil.

4. Soil spatio-temporal variation

Few soil scientists have attempted to analyse variation of soil in space and
time simultaneously, and those who have done have concentrated on the

Žcomparison of spatial and temporal variation Goovaerts and Chiang, 1993; Van
Es, 1993; Comegna and Basile, 1994; Mohanty et al., 1998; Cain et al., 1999;
Rockstrom et al., 1999; Van Es et al., 1999; Wendroth et al., 1999a; Chevalier et¨
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. Ž .al., 2000 . One notable exception is in the work of Comegna and Vitale 1993 ,
who modelled the variation of the soil water status simultaneously in space and

Žtime using a spatial generalization of the classical autoregressive model which
shows much resemblance with the first-order spatial autoregressive model

.mentioned in Section 3.1 . Indeed, it is only recently that geostatisticians more
generally have started to extend their spatial models to the time domain.
Physically based space–time modelling has often been restricted to purely
deterministic approaches.

4.1. Space–time geostatistics

Conventional geostatistics deals with variation exclusively in space. Soil is
dynamic, however, and several of its attributes that vary spatially, such as its
water content and pressure, heat flow, and solute concentration, vary in time
also. Soil scientists have recognized this, and they are now attempting to model
its behaviour in space and time simultaneously and to apply spatio-temporal

Žkriging Papritz and Fluhler, 1994; Bogaert and Christakos, 1997; Heuvelink et¨
.al., 1997; Hoosbeek et al., 1998 .

The extension of kriging to the space–time domain is not straightforward.
Ž .Incorporating time is more than just adding a third or fourth dimension. This is

because the behaviour of an attribute over time is often very different from its
behaviour in space, as was already pointed out in Section 3. Consequently,
suitable geostatistical models characterizing the spatio-temporal behaviour must
take these differences into account. Much of the current research in spatio-tem-
poral geostatistics is directed to the design, structural analysis, and application

Ž .of such models Kyriakidis and Journel, 1999 . The general model is as follows:

Z x ,t sm x ,t q´ x ,t . 14Ž . Ž . Ž . Ž .
Ž . ŽHere the termm x,t is a deterministic trend in the simplest case a constant,

. Ž .i.e. equal to a global meanm , and ´ x,t is a zero-mean, second-order statio-
Ž . w Ž . Žnary residual with autocovariance functionC h,s sCov ´ x,t ,´ xqh,

.xtqs . Because of the difference in behaviour in space and time, the residual
Ž .´ x,t will usually have space–time anisotropies. This makes identification of
Ž . Ž .C h,s from point observations ofZ x,t difficult, especially because a further

simplification by strict separation of variability in space from that in time
Ž . Ž . Ž . ŽthroughC h,s sC h qC s yields unrealistic results Rouhani and Myers,1 2

.1990; Dimitrakopoulos and Luo, 1994; Heuvelink et al., 1997 .
In the usual geostatistical setting we find that we have three-dimensional

models with zonal and geometric anisotropies. Geometric anisotropies arise
because a unit in time is not the same as a unit in space. An anisotropy ratio is
therefore needed to match the temporal range of the variogram with its spatial
range. Zonal anisotropies will arise because the amount of variation in time may
be smaller or larger than that in space. Temporal persistence of spatial patterns
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implies that spatial variation is larger than temporal variation, spatial persistence
Ž .of temporal patterns implies the opposite. Vachaud et al. 1985 , Goovaerts and

Ž . Ž . Ž .Chiang 1993 , Comegna and Basile 1994 and Heuvelink et al. 1997 have
recorded temporal persistence of spatial patterns of mineralizable nitrogen, soil
water content, and other soil properties. Fig. 5 shows space and time slices taken
from a realization of a random process with spatial persistence of temporal
patterns. Fig. 6 shows space and time slices from a realization of a random
process with temporal persistence of spatial patterns.

Modelling the space–time variogram is likely to be difficult, and we need to
think what models and fitting techniques we should use for the purpose. If we
can do that, however, we should be able to krige in the usual way to obtain
optimal predictions of the soil property at points in space and time from
observations nearby in both. So in this sense there is no big difference, and
existing routines will be applicable.

An important disadvantage of the purely geostatistical approaches to space–
time modelling is that it is not easy to include physically based knowledge in the

Ž .model. For this we need to rewrite the model expressed by Eq. 14 into
state-space form, just as we did in the previous section where we addressed
temporal soil variation only.

4.2. The spatio-temporal Kalman filter

We introduced the state-space approach in Section 3.2 where we limited it to
time only; but there is a natural extension to the combination of space and time.

Ž . Ž .Let us rewrite Eqs. 12 and 13 as

Z t sA t Z ty1 q´ t 15Ž . Ž . Ž . Ž . Ž .
and

Y t sB t Z t qh t , 16Ž . Ž . Ž . Ž . Ž .
Ž . Ž . Ž . Žwhere we have assumed the linear form. In Eqs. 15 and 16Z t is a very

.large random vector representing the soil variable in all layers at all locations in
Ž .the discretized spatial domain. We denote it with the bold capitalZ to indicate

Ž .that it is random; it is not a matrix. LikewiseY t is also a random vector.
Ž .Matrix A t describes how the state at timet depends on the state at timety1;

lateral or vertical flow is represented by assigning non-zero values to the
Ž . Ž .off-diagonal elements ofA t . Matrix B t will usually be a diagonal or even

Ž .the identity matrix measurements are rarely influenced by the surrounding ,
although there are exceptions. For instance, measurements made at a larger
spatial support, such as when soil water content is measured over the whole soil

Ž .profile one may think of a soil column that is placed on a balance , may be
represented by assigning equal ‘weights’ to the corresponding cells in the matrix
Ž . Ž .B t . Temporal correlation inZ t is introduced through the recurrence relation
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Fig. 5. Time and space slices taken from a realization of a 2Dqtime stationary Gaussian random process exhibiting spatial persistence of temporal
Ž .patterns. Meanms50, the variogram used is a spherical model with zero nugget and range 40 space and time . Temporal sill equals 60, spatial sill 6.

w x Ž . Ž . ŽRealization obtained for a 100=120 spatial rectangle= 0,100 time interval. Time slices taken atts20 top left , ts60 top middle andts70 top
. Ž . � 4 � 4 � 4right . Space slices bottom taken atxs 40,70 , xs 50,60 andxs 90,110 .
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Fig. 6. Time and space slices taken from a realization of a 2Dqtime stationary Gaussian random process exhibiting temporal persistence of spatial
Ž .patterns. Meanms50, the variogram used is a spherical model with zero nugget and range 40 space and time . Spatial sill equals 60, temporal sill 6.

w x Ž . Ž . ŽRealization obtained for a 100=120 spatial rectangle= 0,100 time interval. Time slices taken atts20 top left , ts60 top middle andts70 top
. Ž . � 4 � 4 � 4right . Space slices bottom taken atxs 40,70 , xs 50,60 andxs 90,110 .
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Ž .in Eq. 15 , spatial correlation through non-zero correlations between compo-
Ž . Ž .nents of the noise vectoŕ t . In Eq. 15 the law of continuity can be easily

Ž .incorporated by placing constraints on the coefficients inA t , i.e. by requiring
Ž .the elements of rows ofA t to sum to 1.

Ž . Ž .Just as before, under the model defined by Eqs. 15 and 16 and a few
Ž .additional assumptions, the prediction ofZ t at an unobserved point in space

and time is obtained from the Kalman filter or smoother. Now, of course, it is in
a space–time context, but the space is hidden in the very large vector. So the
spatial extension can be dealt with at the expense of a strong increase of the

Ždimensionality a 100=100 two-dimensional grid yields a vector of length
.10 000, so the variance–covariance matrix is 10 000=10 000 . This causes

numerical problems, which is an important reason why we have seen so little of
the spatio-temporal Kalman filter so far. But computers are becoming ever
faster, and much work is being done to find efficient routines that solve the

Žproblem at least approximately Huang and Cressie, 1996; Verlaan, 1998; Zhang
.et al., 1999 . Many of these techniques exploit the sparsity of the system

matrices or make approximations to facilitate computations.
Ž .Or and Hanks 1992 used Kalman filtering in combination with kriging to

Ž .reduce the computational load. Morkoc et al. 1985 used the state-space
approach for describing variation in soil, but their work has been followed up

Ž .only very recently Bierkens et al., 2001; Knotters and Bierkens, 2001 .
Ž . Ž .A continuous time space analogue of Eqs. 15 and 16 may also be

formulated. This results in a similar solution to the filtering problem, although
the mathematics behind it is more advanced.

One major difficulty with the state-space approach to space–time prediction
Ž . Ž .is to identify the parameters. The matrices in Eqs. 15 and 16 contain many

parameters that must be estimated from observations. The same holds for the
Žvariance–covariance matrix of the system and measurement noise or even the

.full joint distribution . Although this problem has been rigorously addressed in
Ž .stochastic systems theory Jazwinski, 1970 , current procedures are numerically

intensive and will usually involve subjective choices to reduce the number of
estimable parameters.

4.3. Soil-landscape eÕolution modelling

Spatio-temporal Kalman filtering is presented above for merging knowledge
of processes with observations for modelling variation in soil properties in space
and time. What comes first to mind are processes that take place over fairly
short times, such as water and solute movement. But there is nothing against
using the same approach for longer times, such as we might postulate for the
development of the soil landscape.

We started out discourse by reviewing soil classification. We noted that in
Ž .many instances pedologists had an underlying notion a mental model of how



( )G.B.M. HeuÕelink, R. WebsterrGeoderma 100 2001 269–301294

the soil formed from its parent material in the particular climate over time. This
required an appreciation of how geology and climate interact with tectonics and
geomorphology, by erosion, sedimentation, surface and subsurface flow, infiltra-
tion, weathering, organic matter accumulation, etc., and thus form the soil. The
knowledge and understanding used in soil survey to map the soil are undoubt-
edly subjective and qualitative. We put them aside and turned our attention to
geostatistics, though we tried to merge the two. But now we have added the
temporal dimension, and this opens up possibilities.

Ž .Ever since its introduction, Jenny’s 1941 formulation of the State Factor
Ž .Model SFM of soil formation has generated much discussion. This model

states that the soil is a function of five soil-forming factors, namely climate,
organisms, relief, parent material and time. If such a model were to become
quantitatively operational, then we should have a very powerful tool to aid and

Ž .test our understanding. But can the SFM be made operational? Kline 1973
noted that the equations derived from Jenny’s expression ‘would be of unprece-
dented complexity, and probably completely intractable’. Time has not stood
still, however, and soil scientists now take a more optimistic view of the

Žfeasibility of building simulation models of pedogenesis Hoosbeek and Bryant,
.1992; Burrough, 1993b , and we already witness some first rudimentary imple-

Ž .mentations Minasny and McBratney, 1999 .
The problems of successfully implementing the SFM can hardly be underesti-

mated. Parts of the SFM are highly non-linear, and there is immense scope for
positive feedback; so small variations in the initial state of the soil persist and
grow over time. This, together with the fact that the initial state is largely
unknown, means that we shall never know exactly how a given site was

Ž .perturbed over the course of tens of thousands of years Phillips, 1998 .
Implementing the SFM to predict the soil will inevitably induce large uncertain-
ties. Predictions from the SFM must therefore be conditioned on observations.
The state-space approach provides the framework for this.

When framed in terms of fluxes and exchanges of energy and matter, the
SFM is mathematically formulated in terms of differential equations. Discretiz-
ing these differential equations and adding noise to the system yields equations

Ž . Ž .of the type 15 but then probably the non-linear form . Adding noise is
sensible because, although we have some idea of the structural equations
describing soil formation, our knowledge of the parameters and inputs is so
incomplete. So there is much uncertainty, which should be conveyed explicitly.
Further, we shall want to use our observations to improve our predictions, and a

Ž .measurement equation of the type 16 is defined in addition.
If the SFM can be cast in a state-space form, then data assimilation

Ž .techniques i.e. the Kalman filter may be used to predict the soil. In this way,
information from the SFM will be optimally combined with the observations.
When we are very uncertain about the SFM, the noise in the system will be
large. As a result, the prediction will rely heavily on the observations. The result
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will be conventional geostatistics. When our observations are scarce or contain
large measurement errors, we shall rely more on our knowledge of soil
formation as contained in the state equation.

5. Conclusions: a look into the crystal ball

There is much diversity in the approaches to modelling soil variation. This is
in part because there are so many sources of information. At the landscape scale
and over times of millenia and longer, there are our theories or hypotheses of
soil genesis, which state how geology and climate are believed to cause
variation in soil. At the scale of the individual field and over times of minutes,
hours, days and months, we may use laws of physical processes, expressed
quantitatively in terms of Richards’ equation and Fick’s law, for example. Last
but not least, there are the observations. Over the years these sources of
information have been weighed differently in models of soil and its behaviour.

In the 1960s soil variation was described largely qualitatively and was
modelled on an understanding of soil genesis, again almost entirely qualitative.
When that approach was found wanting pedologists switched to a purely
empirical statistical approach, namely geostatistics that had proved so effective
in mining. This approach, which relies almost solely on the information con-
tained in the observations, has become increasingly refined. It has its analogue
in time series analysis, but this has not been rigorously explored.

For the future, we think that soil scientists should use more of the collective
Ž .knowledge of processes i.e. SFM when mapping soil. In fact, we are not alone

Ž .in this view Hoosbeek and Bryant, 1992; Burrough, 1993b . By using data
assimilation techniques such as the Kalman filter and smoother, we may be able
to predict soil conditions more accurately, because these techniques make use of
all sources of information, and weigh them in accordance with their accuracy.
Reduction of prediction error variance will be the most important advantage
from a practitioner’s point of view. However, from a scientific point of view
incorporating the SFM is first and foremost justified because it may aid in

Ž .explaining soil variation. In the words of Amundson 1998 : it provides ‘ . . . a
blue print from which we may begin to unravel the mysteries of our surround-
ings’.

The new approach is, we believe, promising, and it may advance the
environmental correlation approaches to soil-landscape modelling discussed in
Section 2.3. The current procedures suffer from using terrain attributes of the
present time to predict the soil, whereas the soil was formed in the past when the
environment was very different. One solution to this problem seems to be to
adopt a dynamic approach, as described in Section 4.3.

Incorporating knowledge of processes into statistical models is intuitively
desirable, but the parameterization is difficult. When advocating this we have to
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grapple with the well-known problems of identifying the parameters as mecha-
nistic or functional, and there is a limit on the extent to which one can go.
Perhaps in many cases one simply has to stick to purely empirical models that
rely on observations only. One major problem is to quantify processes that took
place in the past yet of which little is known quantitatively. But it is worth
attempting a solution. It will require a joint effort of scientists with varied
backgrounds: they will have to integrate geology, geomorphology, hydrology,
vegetation science, and soil science. There are loops: soil affects vegetation,
vegetation affects soil; geomorphology affects soil, soil affects geomorphology;
and so on.

So, there is much to be done and many problems to be resolved to make
things work. The problems are not only computational, we have also to
transform conceptual models into mathematical formulae, we have to deal with

Žthe great deal of uncertainty about past conditions we do not have detailed
.digital terrain models or land cover maps of 1000 years ago, for example , we

have the non-linearities and the non-stationarities. Our work as designers and
builders of models that can adequately describe the complex variation of the soil
is far from finished.
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