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Chapter 8

Studying Dynamic and Stochastic Systems
Using Poisson Simulation

Leif Gustafsson

1. Introduction

1.1. Different types of models

In order to describe and understand complex systems, different types of mo-
dels are used to capture different aspects of the real world. In some cases
mathematics, statistics or some theoretical approach from operations re-
search may be used, but usually some kind of simulation is required for more
complex models.

Depending on the nature of the system and the purpose of the study, the
researcher may choose to build a dynamic, stochastic, spatial or other kind
of simulation model. In this chapter the focus is on the combined dynamic
and stochastic aspects, which are often linked in such a way that a pure
dynamic model may give a false dynamic behaviour and a pure stochastic
model may give wrong stochastic estimates. The dynamic and stochastic
 aspects then have to be modeled in one and the same model.

In Fig. 1 the four possible combinations of static/dynamic and determi-
nistic/stochastic models are displayed.

Stochastic models may be based on a strict statistical theory and dynamic
models on a strict mathematical theory of difference or differential equa-
tions. Here the focus is on combined dynamic and stochastic models (the
upper right square in Fig. 1) where the theoretical base is more problematic
and rapidly becomes complex. In the discrete time domain this class of
models can be expressed as: x(t + ∆t) =  f [x(t ), u(t ), w(t ), t ] where x is a state
vector, u is an input vector and w is a vector of stochastic variables (Åström
K.J., 1970). (In a linear case, models of the form x(t + ∆t) = F x(t) + Gu(t) +
w(t) are studied in e.g. automatic control.) Conceptually, such models can be
obtained from a stochastic model by adding dynamics or from a dynamic
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model by adding stochastics.
Historically, Discrete Event Simulation (DES) is based on the Monte Carlo-

type of model where a network of stations (resources) is passed by some ac-
tors (objects, entities). Actors queuing for these resources generate a dyna-
mic behaviour. The results from DES – statistics of number of actors, resour-
ce utilization, queue times etc. – also show that the focus is on the stochastic
aspects rather than on the dynamic.

Another type of simulation is based on Markovian models, e.g. simulation
of Markov chains, which is a stochastic process obeying the Markov condi-
tion which means that all information on the history up to the present mo-
ment is represented by the state. If a stochastic variable x(t) of the process is
discrete, it can take a number of discrete outcomes called states. Transitions
between these states are specified in a transition probability matrix.

A challenge is to include an appropriate mechanism to Continuous Sys-
tem Simulation (CSS) so that we get stochastic results compatible with what
we get from DES or Markov simulation. This is what we call Poisson simula-
tion (Gustafsson, 2000). Here the foundation is a dynamic Continuous Sys-
tem Simulation model where random generators of proper distributions are
used to control flows between the states. Then the results in the form of dis-
play of the dynamic behaviour (including the stochastic disturbances) are
presented by the CSS language, while statistics within and between simula-
tions have to be added.

Figure 1. Classification of models in terms of static/dynamic and deterministic/sto-

chastic and examples of simulation techniques. In this chapter the focus is on meso-

scale models using Poisson simulation.
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1.1.1. Aspects of scale
There is also an interesting difference according to scale (in terms of number
of items rather than in terms of size). On a micro-scale the focus is on a single
or a few objects or events. Although differential equations can then be used
to describe physical conditions using e.g. Newtonian equations, this is not
the instrument to describe flows of objects or events over time. On a macro-
scale, on the other hand, the numbers are so large that statistical fluctuations
gradually lose their importance in accordance with the Law of large num-
bers. For example, statistical mechanics then transforms into thermodyna-
mics. However on the meso-scale, with moderate numbers of entities or
events, dynamics are well treated in terms of differential equations and the
numbers are large enough to be treated statistically.

This also becomes clear comparing the DES and the CSS approaches. In
DES we have a micro view of the system where each object is modeled,
whereas conventional CSS, based on differential equations, requires macro-
scale flows (state derivatives) large enough to be considered continuous. For
example, when studying radioactive decay of an element the number of
atoms is usually very large and therefore the stochastic variations are negli-
gible. But if the number is not that large, statistical aspects may become cru-
cial for correct estimates.

DES is also a powerful tool for handling the stochastics of a complex mo-
del on the meso-scale. But in many cases there is a desire to base one’s model
on well known differential equation relations, including stochastics in an
appropriate way. The meso-scale may occur because of limited population,
small sample, limited study etc., either because the number of cases are few
or because of costs, time consumption, ethical restrictions or other factors.
This is often the case in demography, ecology, epidemiology, medical trials,
agriculture, forestry and genetics to mention just a few disciplines. Poisson
simulation, described below, is then a powerful tool.

1.1.2. Purpose of this chapter
The purpose of this chapter is to demonstrate the importance of treating dy-
namics and stochastics together in the same model and to show how Pois-
son simulation can smoothly handle different types of models on the meso-
scale. Therefore, a number of examples from various disciplines are given in
order to demonstrate different aspects emerging from the interplay between
dynamics and stochastics. In these examples it is also demonstrated how
statistical aspects can be handled. In the last section of this chapter, there is
a discussion of how Continuous System Simulation should be extended or
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complemented to also include facilities for multiple runs and subsequent
statistical analyses.

1.2. A dynamic and stochastic process

A model of dynamic and stochastic equations has a solution (behaviour)
that varies over time but it also gives a new solution for each realization (new
simulation run). Mathematically, this is described in the theory of stochastic
processes, where a stochastic variable X(t, ω) is a function of two variables t
and ω (defined on an appropriate space {t ∈ T, ω ∈ Ω}). Then t is time and ω
is a realization* (solution, trajectory). See Fig. 2.

If we fix time we get a stochastic variable, and if we fix ω we get a realisation
(trajectory).

1.2.1. Dependency between dynamics and stochastics
A dynamic and stochastic model results in stochastic solutions that vary be-
cause of the dynamic structure and the stochastic variations, but also be-
cause of couplings between the dynamics and stochastics. Thus, the stocha-
stics excite the dynamics and the dynamics change the conditions for the
stochastics. This means that there is a kind of feedback between the dyna-
mics and the stochastics. Therefore, in the general case it is not possible to
separate the problem into dynamic and stochastic parts.

In the general case, the stochastic variable (X) may be discrete or conti-
nuous. In addition, the time can be modeled as discrete (t = 0, 1, 2…) or con-
tinuous (0 ≤ t < ∞). Since this chapter focuses on the meso-scale in terms of
moderate numbers, only the case where the stochastic variable takes dis-
crete numbers in continuous time is treated.

* The term “realization” is also used for different model structures in e.g. automatic control.

Here, it will only be used in the meaning of stochastic outcome e.g. of a simulati on run.

Figure 2.  Three realisations of a stochastic process.
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1.3. Two traditions – focusing on structure or behaviour

One problem in discussing and handling dynamic and stochastic problems
is that dynamics and stochastics are studied in two different traditions or
cultures.

In mathematics and systems sciences the focus is on the model with an in-
ternal structure expressed e.g. in terms of a system of differential equations.
The solution (behaviour) over time is then deduced analytically or calcula-
ted numerically from this structure. The focus is on modeling; finding a
suitable model structure and fitting parameters (so that the studied property
expressed as an objective function behaves as similarly as possible to the
corresponding quantity of the real system).

In statistics, on the other hand, the connection between structure and
outcome was once handled by deducing probability distributions from cer-
tain assumptions. However, a statistical model is more of a black box where
input (e.g. exposure) generates an output with a certain distribution. The
task is to fit the parameters of the distribution to observed data in e.g. a least
square sense. (In likelihood statistics, though, the model often becomes
more explicit.) Regression and statistical tests are major instruments. This
works well when we have a proper standard distribution for the problem at
hand, but when the underlying structure, conditions or assumptions be-
come more complex, e.g. dynamics have to be included, we have to go all the
way back to the fundamentals.

1.3.1. Reasons for starting with the structure
Let us demonstrate the advantages of starting the modeling work from the
structural approach by means of a rather simple, but not trivial, example as
shown in Fig. 3.

Figure 3.  A rather simple dynamic and stochastic model to describe the stochastic

process of a cancer in a birth cohort.
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To make it more concrete, we assume that the four states depict the pre-
stages or stages of cancer development in a cohort. Each state is represented
by a box of prevalent cases and the flows between the states are incidences
(rates). The input is the incidence of new cases and varies over age for the
cohort studied. In State 1 the disease cannot be detected by screening tests,
which it can in later states. From States 1 and 2 the disease may spontane-
ously regress. The output from State 4 represents deaths from the disease.
From State 2 and onwards the tumour may produce metastases, taking the
disease to State 4. With this (oversimplified) model we want to study the
effects of different screening strategies on the mortality. Since we deal with
moderate number of cases, statistical tools are needed to calculate averages,
variation and confidence intervals for our estimates. However, we get into
the following problems that can be handled with a structural approach, but
not with a black box model of a distribution:

· There are no named statistical distributions to most structures that han-
dle the underlying dynamics. Furthermore, those cases that enter State 1
at a certain time will not all go the same way and the fraction that does
will not come out at the same time. (Seen from the other direction: the
cases that come out at a certain time did not commence simultaneou-
sly.) Even if we knew the average sojourn times in the states, we would
still not find a suitable stochastic distribution to describe this system.

· Inputs may be empirical functions obtained from measurements. This
makes a theoretical approach impossible, including overall distribu-
tions between input and output. (In best case we get into convoluted
time integrals of a stochastic process.) Numerical integration over time
is the only option.

· The initial value problem. The states are usually not empty at the start.
For example the study may concern a birth-cohort that is, say, 40 years
old at start. What is the initial values of each state?

· To understand/modify/control etc., an explanation (structural) model –
not a “black box” distribution – is required.

However, from a more practical point of view it is also better to focus on
structure and to leave the calculations to the computer. Man is good at han-
dling structure – computers can calculate.
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1.3.2. Different model structures
A mathematical model relating the dynamics between input and output can
be described in terms of a system of differential equations in different ways.
In structural terms, the states can be arranged in series and in parallel.
However even though different model structures can generate the same
dynamic behaviour, these structures may differ with regard to sensitivity to
disturbances, observability, controllability and other aspects. This is well
known in systems sciences such as automatic control, (where the term rea-
lisation is used for different ways to structure a model – a term we avoid in
this presentation). As will be seen later on, when stochastics are added the
distinction between different (deterministically equivalent) model structu-
res becomes important.

1.4. Poisson simulation

In Continuous System Simulation the model is composed of a system of dif-
ferential (and algebraic) equations that are solved repeatedly for a small step
of time until the end time is reached.

Poisson simulation is a method to include stochastics into Continuous
System Simulation in a realistic way. This technique is treated in detail in
Gustafsson (2000) and will only be sketched here. In the modeling, a system
of differential equations can be described in terms of states and flows, see
the Appendix. These flows can be handled stochastically by including ran-
dom numbers of proper distributions. Thereby the stochastics become
modeled as opposed to just adding input noise.

The basic idea is that any change of a state value occurs only through in-
flows and outflows to that state. Deterministically, each flow is regarded as
having a constant flow rate or intensity (λ) (objects or events per time unit)
during a very short time step, ∆t. If this flow is composed of events that
happen independently and one at a time, the flow is a Poisson process defi-
ned by the single intensity parameter, λ. The probability of an event during
the finite time interval ∆t then becomes proportional to the length of the
interval. In terms of a statistical distribution, the number of events during
the time interval ∆t then becomes Poisson distributed and described by
Po(λ*∆t). In the case where we have a discrete outcome it is thus natural to
base the stochastics on the Poisson distribution (although other distribu-
tions may sometimes be justifiable).
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1.4.1. The Poisson distribution
The Poisson distribution, Po(λ), is a discrete distribution that describes the
number of events that occur in a unit interval of time for a certain value of the
intensity parameter λ when the events occur independently and one at a
time. In Fig. 4 the Poisson distribution is shown for λ = 2 and λ = 5.5.

The Poisson probability function is p(x) = e−λ · λx / x! if x ∈ {0, 1, ...} and
otherwise 0, while the mean and variance of the Poisson distribution are
both equal to the intensity λ.

Since the interest is on the number of events during the time step ∆t, we
will in the following deal with the expression Po(∆t · λ).

1.4.2. Poisson distribution or not?
The simplest case is when events happen independently and one at a time
(Poisson process). Often the intensity varies over time, implying a non-sta-
tionary process where λ = λ(t ). This causes no problem because λ(t ) can be
stepwise constant during the short time interval ∆t – just like other quan-
tities in Continuous System Simulation.

Of course, there are cases when the assumptions on independency and
one at the time are not fulfilled or when the content of a state changes mo-
mentarily. In such a case it is up to the modeler to attach an appropriate
distribution. If a Poisson distribution is not appropriate, any of the following
may be used:

· any distribution D(..).
· sum of distributions D1(..) + D2(..).
· product of distributions D1(..) · D2(..).
· distribution of distributions D1(D2(..)).
· distributions with several parameters D(p

1
, p

2
, ...p

n
)

where the parameters can be modeled separately.

Figure 4. The Poisson distribution for λ = 2 and λ = 5.5. Notice that the intensity λ
may have any positive value while the outcome always is a non-negative integer.
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1.4.3. Adding stochastics to a simple CSS model
A CSS model is represented by a system of ordinary differential equations.
Each equation can be written as: dx /dt = f (x, t) together with an initial value
x(0) = xo. In CSS languages this dynamic equation is sometimes written as:
x = INTEG( f, xo), or in the Euler approximation: x(t + ∆t) ≈ x(t) + ∆t · f (t ),
where f is the net flow rate to the state x. For the sake of simplicity, this is ex-
emplified by a first order system written in the Euler form.

Example 1. How stochastics are introduced – Radioactive decay
Study a system of 100 radioactive atoms that will decay with a time constant
of T = 50 time units. This means that at each time unit the fraction p = 1 /T
of the remaining atoms are expected to decay. This system has one state x
and one outflow rate F which is proportional to the state value. Neglecting
statistical fluctuations, a conventional CSS model might have the structure:

x = 100 [Initialization]
Goto * [Since x(0) is given it remains to calculate

F at time=0.]
AGAIN:

x = x + ∆t · (–F ) [x is updated by ∆t times the outflow rate –F .]
* F = p · x [F is prop. to the remaining number of atoms (x).]

time = time + ∆t [Time is advanced one small time-step.]
if time ≤ Tend then Goto AGAIN

For each time step ∆t, a certain fraction, ∆t · p, of the state value, x, leaves the
state as an outflow. When the number of atoms in the state is large, the sto-
chastic variations can be neglected. However when the number is not that
large, the stochastic variations have to be considered. The expected outflow
is still F = p · x per time unit or ∆t · F = ∆t · p · x during the time interval ∆t.
Since the properties of single events and independency, discussed above,
are fulfilled, the number of events during ∆t should be Poisson distributed
with the intensity λ = F = p · x. Thus, the outflow during the time interval
∆t has a Poisson distributed variation denoted Po(∆t · λ). The flow rate then
becomes: Po(∆t · λ) / ∆t. Therefore, the model is reformulated as:

    x = 100
    Goto *
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AGAIN:
x = x + ∆t · (–F )

* F = Po[∆t · p · x] / ∆t [F is now stochastic. The rest is unchanged.]
time = time + ∆t
if time ≤ Tend then Goto AGAIN

Po[~] means that for each time-step ∆t, a random number is sampled from a
Poisson distribution with the actual parameter value specified in the expres-
sion within the brackets. One advantage with this mechanism to introduce
randomness is that the time step ∆t can be changed to handle the dynamics
properly without distorting the stochastics.

An alternative representation of a differential or difference equation mo-
del, often used in CSS languages like Powersim or STELLA, is a graphical de-
scription in terms of states and flows. The states are then represented by
boxes (containing a certain amount at initial time) and inflows and outflows
to the boxes. (There are also auxiliary symbols that just compute the alge-
braic relations.) A die in the flow symbol means random sampling from a
specified distribution. A short description of this is given in the Appendix.
In Fig. 5, the deterministic and stochastic models of radioactive decay just
described are shown together with a graph of the results of a simulation. This
model reveals the stochastic properties with regard to the number of items
in state x.   �

Figure 5.  The radioactive decay model in CSS and as a Poisson simulation model. (See

Appendix for understanding the dynamic diagram.) The deterministic solution is

shown as a dashed line and one stochastic realisation is shown as a solid line.
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In general, the states in a Poisson model are updated by inflows and out-
flows. Some flows may be deterministic, some Poisson distributed, and for
other flows noise of any kind may be used.

Poisson simulation thus handles the case where the stochastic difference
equation x(t + ∆t) = f[x(t), u(t ), w(t ), t ] can be written as x(t + ∆t) = f[x(t ),
w(x (t ), r, t), t ] where r is a parameter vector. Notice that the vector w of
stochastic variables here depends on the state vector x. This approach pre-
serves the difference equation model in a form that is mathematically well
understood compared with e.g. a discrete event simulation model of the
same system. At the same time, Poisson simulation offers a number of at-
tractive features and solves several types of problem in an efficient way,
which will be demonstrated in the next section.

2. Examples of meso-scale models using Poisson simulation

2.1. Poisson simulation examples

In the following, a number of small models will be treated in order to demon-
strate new qualities that occur when dynamics and stochastics are modeled
by Poisson simulation. The models are intentionally kept as simple as possi-
ble. This means that some of the models are oversimplified to be easily com-
prehensible. This will, however, not distort the purpose – to show how ad-
ding stochastics gives new qualities and possibilities to better discriminate
between alternative structures of the real system.

Example 2. Stochastics give information which can be
interpreted in terms of model structure – the Gompertz model
Suppose you want to understand the growth of microbes or tumour cells in
some environment and that data show a growth up to a certain level and
seem to fit a Gompertz model (Waggoner, 1986; Braun, 1993) which has the
solution:

(1)

 where V is the number of e.g. microbes, Vo= V(t = 0) and λ and a are positive
constants. The aim is to understand the underlying structural conditions
giving this behaviour. Therefore, we differentiate the equation [using deu / dt
= eu · du /dt ] and get

  (2)

V(t) = Vo · exp[(λ / a) · (1 – exp(–at))]

dV / dt = Vo · λ · exp(–at) · exp[λ / a · (1 – exp(–at))] = λ · exp(–at) · V
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However, the Gompertzian relation is sometimes expressed as:

(3)

where a is the growth rate and K is the maximum size. This equation gives
exactly the same solution if we set the constant K = V

o
· exp(λ / a).

Thus, even for a first order model, the same solution (1) can be derived
from two different differential equations (2) and (3). The differential equa-
tion (2) describes the changes in terms of an exponentially decaying growth
parameter of the process, whereas equation (3) describes the “damping”
in terms of the number of microbes. When V exceeds the capacity limit K
the expression ln(K / V ) becomes negative and equation (3) gets a negative
feedback. However before displaying what happens when stochastics are
added we will go one step further, interpreting the equations (2) and (3) in
structural terms.

Equation (2) can be written as

(2a)

interpreting the factor [λ · exp(–at)] as an increasing mean generation time
for the microbial growth, perhaps because of increasing resistance from the
environment. However it can also be written as:

(2b)

with a constant mean generation time λ, but where the increase in microbes
is hampered by death for some reason. (This latter effect is also seen among
tumour cells where a necrotic region can develop in the tumour or with
mushroom circles in a lawn.) If this is the case we have in fact two “flows”
hidden in the net flow in equation (2b). One flow, F

1
, describes the increase

and the other, F2, the necroses. One mathematically possible model struc-
ture is then:

dV / dt = F1 – F2

F
1

= λ · V (2b’)
F

2
= λ · [1 – exp(–at)] · V

Then dV / dt = λ · V – λ · [1 – exp(–at)] · V = λ · [exp(–at)] · V  still constitutes
equation (2b) above.

dV /dt = a · V · ln(K / V )

dV / dt = [λ · exp(–at)] · V

dV / dt = λ · [exp(–at) · V ]
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The three dynamic structures of the Gompertz relation (1) above based on
the equations (2a), (2b’) and (3) are shown in Fig. 6 a–c as dynamic diagrams
where the state V is represented by a box and inflows and outflows by arrows.
Their deterministic behaviours are exactly the same.

Figure 6.  Three equivalent structures a, b and c for equation (2a), (2b’)

and (3), respectively, all giving the same behaviour V(t) = V
0

· exp[(λ / a) ·

(1 – exp(–at))] over time.

Adding stochastics
However, results from experiments on the real system vary within and be-
tween the experiments. Therefore, such variations should also be generated
in the model. (Here, we assume that this randomness occurs from sto-
chastics in the behaviour outside our control, and not from observational
errors.)

This means that the content of a flow Fx at each point in time becomes a
stochastic variable. For simplicity’s sake, we assume that the numbers of
births or deaths during a short interval ∆t are independent and occur one by
one and thus we regard these flows as Poisson processes. For the equations
(2a), (2b’) and (3), presented as difference equations in Euler’s form, the flow
equations are modified as:

(2a) ∆V = ∆t · F
F = λ · V · exp (–at) F = Po[ λ · V · exp(–at) · ∆t ] / ∆t

A) B)

C)
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(2b’) ∆V = ∆t · (F1 – F2)
F1 = λ · V F1 = Po[λ · V · ∆t] / ∆t
F2 = λ · (1 – exp(–at)) · V F2 = Po[λ · (1 – exp(–at)) · V · ∆t] / ∆t

(3) ∆V = ∆t · F
F = a · V · ln(K / V ) F = Po [a · V · ln(K / V ) · ∆t] / ∆t

Since the systems of equations are now stochastic we get different results for
each simulation run.

In Fig. 7 a number of realizations are made for each of the models (2a),
(2b’) and (3), (which without stochastics gave identical results) with initial
values V(0) = 1:

In the realisation shown in Fig. 7a, the “time controlled damping” is
sensitive for randomness in the beginning. If the first events come rapidly,
the microbes will grow fast and reach a high value before the process is
strangled. Therefore, we get a wide variation between runs. Within a run,
however, the variations will disappear when the exponential damping in-
creases, i.e. when exp(–at) goes to zero.

In the realisation in Fig. 7b the inter-variations are very wide. When the
exponential term in (1 – exp(–at)) disappears, there remains both an  inflow
and an outflow of the same expression (λ · V ). The net flow from these may
then stochastically drift to any non-negative value. (A more realistic model
would here be based on the logistic equation where the outflow is related to
a quadratic competition term which would stabilize the model around the
deterministic end level, but still with intra-variations – see Example 3.)

Figure 7.   A number of simulations made for each of the models (2a), (2b’) and (3). The

dashed line is the behavior of the deterministic model.

A) C) B)
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In the last realisation, shown in Fig. 7c, the inter-variations arise early
because of randomness in the start, just like in 7a. However this time the
damping is because of negative feedback when the number of microbes
exceeds the equilibrium level. At that time all further variations disappear.

As seen, modeling dynamics and stochastics together makes it possible to
discriminate between different underlying structures. Carrying out a num-
ber of experiments on the real system gives us information about inter and
intra variations that have to occur from an underlying structure (still assu-
ming the stochastics to be inherent in the system and not a result of bad ob-
servational accuracy). With Poisson simulation such information can be
modeled and interpreted.  �

Example 3. Adjusting the model structure to
fit observed stochastic variations – A logistic model
Since the stochastic equation (2b’) in Example 2, above, drifts freely, it
doesn’t seem to be a realistic model of a biological system. Therefore, we
keep only its main structure of separate inflow and outflow, but replace the
Gompertz model with a logistic model of the form:

dV / dt = F1 – F2

F1 = a · V
F2 = b · V 2

The change in the state value V thus increases proportionally to V and de-
creases because of competition proportionally to the term V 2 (meaning that
each of the V organisms competes with all the others).

But how does competition work in a given case? Does it result in an out-
flow of dying individuals or does it hamper the growth process or is it invol-
ved in both? From a deterministic point of view the resulting behaviour will
be the same. But stochastically, competition resulting in reduced growth will
give small variations gradually dying out when the system reaches equili-
brium, while competition implying deaths will give the largest variations for
the largest value of the state, i.e. around equilibrium.

It is also possible to add an extra, proportional outflow of deaths (and
compensate for it by a larger inflow) keeping the above net equation. This
will make the variations still larger. In practice, fitting the model to real data
(including the stochastic variations) will help in discriminating among these
options.
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In Euler’s form, these three structures may be modeled as:

Competition as outflow:
∆V = ∆t · (F1 – F2)
F1 = a · V F1 = Po [a · V · ∆t ] / ∆t
F

2
= b · V 2 F

2
= Po [a · V2 · ∆t ] / ∆t

Competition included in a net inflow:
∆V = ∆t · (F )
F = a · V – b · V 2 F = Po [(a · V – b · V 2) · ∆t ] / ∆t

Competition as outflow and extra flows:
∆V = ∆t · (F1 – F2 – F3)
F1 = (a + c ) · V F1 = Po [(a + c) · V · ∆t ] / ∆t
F2 = b · V 2 F2 = Po [a · V 2 · ∆t] / ∆t
F3 = c · V F3 = Po [c · V · ∆t ] / ∆t

In the last equation the parameter c can be adjusted to fit the observed varia-
tions. In addition, the amount of competition referring to input or output
can be parameterized in this way.

With this approach each model can be optimally fitted to real data, not
only for mean values but also for intra and inter variations. This gives a base
for testing various structural hypotheses.     �

Example 4. How stochastics excite dynamic variations
and how new qualities are added – A Lotka-Volterra model
The Lotka-Volterra equations describe a prey-predator system for two spe-
cies e.g. Rabbits (X ) and Foxes (Y ) by differential equations (Volterra,1926;
Luenberger, 1979). The rabbits breed at a rate proportional to their number
X. They die because of encounters with the foxes, which is proportional to
X · Y. There is also competition among the rabbits, where each rabbit com-
petes with all the others. Competition, therefore, is proportional to X2. The
encounters with rabbits give the foxes energy to breed, so they increase in
proportion to X · Y. Finally, the fox’ death rate is proportional to the number
of foxes, Y. The Lotka-Volterra model therefore has the form:

dX / dt = aX – bXY – kX2

dY / dt = cXY – dY
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where a and c are fertility constants, b and d mortality constants, and k is a
constant for competition.

By setting the derivatives dX / dt and dY / dt to zero and solving for X and
Y  we obtain three possible stationary solutions (of no rabbits and foxes, only
rabbits or both rabbits and foxes):

1) X = 0 and Y = 0, 2) X = a / k and Y = 0, 3) X = d / c and Y = (a – kd / c) /b.

Setting e.g. a = 0.2,  b = 0.005,  c = 0.005,  d = 0.3 and k = 0.001 gives in the se-
cond case (foxes become extinct) X = 200 and Y = 0, and in the third case
(both species survive) X = 60 and Y = 28 as stationary solutions.

To treat the system numerically we rewrite the equations in Euler’s form:

   ∆X = ∆t · (F1 – F2 – F3)
F1 = aX
F2 = bXY
F3 = kX 2

 ∆Y = ∆t · (F
4

– F
5
)

F4 = cX Y
F5 = dY

Initializing this simulation in steady state with X(0) = 60 and Y(0) = 28 gives
the trivial results of two constant lines for X and Y in a time plot. Even if we
disturb the system to generate variations, these will die out as shown in
Fig. 8.

Now assume that the flows of births, deaths and competition follow the
Poisson requirements (this can be debated – but the qualities discussed
below don’t require just a Poisson distribution). Then each flow Fx is trans-
ferred into the form: Poisson(∆t · F

x
) / ∆t. The model, with stochastic flows,

is shown in Fig. 9.

Figure 8.  The deterministic system is damped by the competition and then

stays in an equilibrium.
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Starting the simulation from the equilibrium values X(0) = d / c = 60 and
Y(0) = (a – kd / c) / b = 28 gives a behaviour like that in Fig. 10.

In the Poisson simulation the inherent dynamics of the system are excited
by the stochastic fluctuations. We also see that these dynamics not only
cause the numbers of rabbits and foxes to vary, but they also display the
periodic pattern and period length that is typical of the deterministic model
starting off equilibrium.

Note also that in some simulations all foxes will starve to death, making
the system vary around the second stationary solution. In the simulation
shown in Fig. 10, this happens at about time 820, making the rabbits increase
and fluctuate around the steady state X = a / k = 200.

Figure 10.   An example of the behavior of the Poisson model starting at equilibrium.

Figure 9.  The structure of Volterra’s equations. Randomness is intro-

duced in each flow.
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If we instead had just added noise to the results, it would only have re-
sulted in a superimposed noise without exciting the dynamics.

Including noise of some distribution (say Normal(m
i
, σ

i
) ) to each of the

five flows would excite the dynamics so that they oscillated with the period-
icity given by the dynamics. It would however add several problems. 1) it
would give ten constants m

i
 and σ

i
 to be estimated. 2) We would then have

to normalize the variation for changing ∆t (otherwise the noise influence
would change with the computational step-size used). 3) The foxes might
recover from zero or even negative values. There is also a substantial risk that
a negative state value makes the model unstable and causes numerical over-
flow. However the results would, for example, never have revealed a switch to
the mode X = a / k and Y = 0 which may happen in the real system. This is be-
cause the variance would then not vary in accordance with the state values
and also because we would then have lost the intrinsic integer mechanism of
the Poisson distribution.

This example demonstrates several qualities. Firstly, it illustrates the fact
that dynamics and stochastics may generate persistent oscillations even
when starting at an equilibrium and even though a corresponding determi-
nistic model would damp them out. Secondly, the model may flip to a mode
where foxes become extinct – a quality that could not happen in a determi-
nistic model. Thirdly, the Poisson mechanism preserves integer numbers of
the rabbits and the foxes.     �

Example 5.  Experimental design
A common problem in medical, biological, ecological, agricultural and
many other types of systems is to understand and estimate the effects of
some action, “exposure” (e.g. medication, plant thinning, hunting, pesticide
spraying, acidification, liming, irradiation, stimulus etc.) that via a dynamic
process causes some effects (like healing, growth, migration, sickness, mor-
tality, gene modifications, response etc.). A dynamic model is then needed to
understand the system, calculate the damage or benefit from the exposure
over time, and a statistical treatment is needed to handle variations and un-
certainties.

A study of cause and action has an experimental design where the effects
on an exposed study system and an unexposed (“background exposure”
only) reference system are compared. These systems should in other re-
spects be as similar as possible. Treating this problem with only statistical
methods causes problems. For example in an epidemiological study, the
participants are randomized into a study and a control group. The controls
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only receive background exposure while the study group is given, say, twice
this exposure. The numbers of cases (sick, dead, with some symptoms etc.)
are cumulative for each group. But what is the sojourn time for an exposed
individual to become a case, and does this time depend on the amount of
exposure? Even if the sojourn time is known on average, there is another
problem. Since the process between exposure and outcome is dynamic, the
cases exposed at the same point in time will emerge successively over time.
Thus, for how long a time should the follow up be performed? If a too short
time is chosen, most of the exposed individuals will not get enough time to
become cases and there will be an underestimation. If a too long time is
used, most of the cases induced by the extra exposure will show up, but they
will be diluted by the many cases who get the disease from the ever-present
background exposure. This weakens the statistical estimates.

To handle these problems properly, a dynamic model is needed to handle
the time evolution and to understand the process. However, we also need to
estimate the stochastic variations to “guarantee” the results, in terms of

Figure 11.  A Poisson simulation model of a reference system (0) only exposed to back-

ground exposure and a study system (1) in which the total exposure is twice the Back-

ground Exposure. The studied effects are cumulative number of cases over 20 years.

Three simulation runs of the cumulative effect for the two systems are shown in the

first diagram.The second diagram shows the results for the difference (Dif ) and the

third shows the ratios (RR) between cumulative numbers of cases from the study

group and reference group for each of the three simulation runs.
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TimeTime



Poisson Simulation 151

variations, interval of significance or hypothesis tests. Furthermore, dyna-
mics and stochastics have to be treated together to get realistic results. Thus
we use a Poisson simulation model of this experimental design as shown in
Fig. 11.

Assume that the disease from exposure to outcome can be described by a
third order dynamic model and that the known sojourn time (average time
in all the three states) is six years. The goal is to estimate the effects of the
extra exposure imposed on the study group. “RelRisk” is an a priori unknown
parameter that tells how many times the background exposure level the
study group is exposed to. (RelRisk = 2 means that the total exposure of the
study group is twice the Background Exposure.)

After fitting this model to real data, the effects of the exposure developing
over time can be simulated. By making many runs the stochastic variations
of the exposure in terms of mean, average, confidence intervals etc. can be
estimated in absolute terms or in terms of difference (Dif ) or ratio (RR). With
a model that reasonably well describes the dynamics and stochastics, this is
readily done by making some hundreds of simulations and calculating the
mean, variance, confidential interval or testing a hypothesis. It can also be
seen that although the sojourn time was only six years, a follow up period of
20 years is not enough to get a good estimate of RR = Cum1 / Cum0. We get
a value around 1.7 to 1.8 instead of 2.0.

A more powerful approach is to estimate parameters involved (like sojourn
times or fractions that progress or regress). Such results relate to the under-
lying structure of the disease and are more comparable between studies
than statistical measures that vary with the follow-up time used. Parameter
estimation would also give an unbiased estimate of RelRisk independent of
the length of the follow-up period. A longer follow-up time then does not
change the expected value but only reduces the variances of the estimates.

Experimental design is for many sciences by far the most important me-
thod of studying a dynamic system. However, experiments on the real sys-
tem then have to be interpreted with the help of a model that preserves both
the dynamic and stochastic aspects. Poisson simulation here offers a power-
ful technique for modeling and analysis.     �

Example 6.  Interpretation of Life Table information
Five-year survival, LD-50 and other scalar measures are often diffuse measu-
res of a disease, but are still in wide use. A more powerful description of sur-
vival in a disease is to use life tables. This means that you present the number
of survivors as a function of time after diagnoses (or treatment). At time zero
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you have a closed cohort of diseased objects (patients, animals or plants). As
time goes by, a number of the objects die. Unfortunately, this curve of the
number of survivors over time is not only a measure of the disease. The dis-
tribution of diagnoses in different stages and treatment also affects the life
table. To further interpret life table data, a realistic underlying model of the
disease to be fitted to actual data is needed.

At first glance the life table may look somewhat like an exponential decay.
However, a closer study reveals that the disease process has to be described
by several consecutive states like those in Fig. 12. In this case we assume that
a certain amount are successfully treated in Stages 1 and 2 but that Stage 3 is
untreatable.

Conclusion: With the Poisson simulation we can model and analyze both the
dynamics and the variations of a life table.    �

Figure 12.  An example of a deterministic life table model and its Poisson equivalent.

The behavior of these models is also shown by a thick line for the deterministic solu-

tion and thin lines for three stochastic realizations. (The numbers are presented in

per cent.)
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Example 7.  Replacing a large number of
Markov simulations – Ion channels in a neurone
Ion channels transporting sodium or potassium ions play a fundamental
role in transmitting signals in neurones. By attaching a probe to a neurone
the current from a huge number of sodium ion channels can be recorded.
During an experiment where a neurone is stimulated, the non-stationary
current from the sodium channels changes over time but also fluctuates
stochastically. This is interpreted as a varying number of ion channels being
open at a given point in time. To explain the results from such measurements
dynamically and stochastically, a Markovian model of a single ion channel is
used. This model may look like that shown in Fig. 13.

The number of ion channels in the studied part of the neurone and contri-
buting to the current is in the order of 1000 to 100 000. This may look like a
huge number, well beyond the meso-scale, implying a dynamic but deter-
ministic model. However, only a small fraction of the ion channels are open
at a particular point in time. Since the current is proportional to (the nega-
tive value of) the number of open channels, fluctuations from a moderate
number of channels are seen.

Figure 13.  A possible Markov model of a single ion channel. The channel has a num-

ber of inner gates that may be open or closed. The states C
i 
 refer to combinations of

the states  (open or closed) of these gates. The state O means that all gates, i.e. the

channel, are open. The state I means that the channel is inhibited and cannot open

again during the short experiment. The numbers a
1
 to a

5
 are transition probabilities

between states. At start the initial state is C
1
. (Note that in a Markov model the term

state refers to a possible outcome of the stochastic variable, and does not represent

the variable itself as in e.g. differential equation models or CSS simulation.)

C1 C2 O
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By building 103 to 105 copies of the Markov model, or more cleverly, by simu-
lating the Markov model 103 to 105 times, we get that number of time plots,
as in Fig. 14.

Imagine now that the Markov model instead could be initiated by N, in-
stead of one, item in state C1 and that the transitions (still independent and
one at the time) are random. Then the number of transitions from one state
to another during a time interval ∆t becomes Poisson distributed and pro-
portional to the number in the departing state, to the transition probability,

Figure 14.  Results from N realizations of the Markov model. By summing up for each

point in time, the sum of open channels, i.e. (minus) the current can be displayed re-

vealing the dynamics and stochastics of the process.

Figure 15.  A Poisson simulation model of the N ion channels. C1 is initiated to N. The

current (Cur) is displayed to the right of the model (solid line) together with the results

from the corresponding deterministic model (Cur0 displayed as a dashed line). This

model is not shown. To calculate the number of ion channels that have participated

during the simulation, an extra, deterministic, accumulator (Sum_O) is introduced.

From the top diagram it is seen that this total number is about 150–200 (meso-scale!).
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and to the time interval ∆t. However this is exactly Poisson simulation in its
straight forward setting. Thus, let us make an equivalent model of the N ion
channels, as shown in Fig. 15.

As demonstrated, when studying the aggregated results of many Markov
processes, Poisson simulation can readily handle the problems much more
efficiently than Markov studies. The same results are obtained with a much
smaller and more flexible model, and the calculations take a small fraction of
the time required using a Markov model. It is also easy to change the struc-
ture, parameters, number of channels, or to add extra facilities like accumu-
lators for number of channels open at any time during the simulation, or to
compare with deterministic results.   �

Example 8. Testing a hypothesis – Lanchester’s Quadratic Law
In warfare as well as disarmament, it is important to understand the balance
between forces in dynamic and stochastic terms. A fundamental principle of
concentration was formulated by F. Lanchester in 1916 and is known as
Lanchester’s Model of Warfare or Lanchester’s Quadratic Law (Lanchester,
1916). See also (Newman, 1956; Saaty, 1968).

The underlying assumption is that two forces are in combat where each
unit (soldier, vessel or aircraft) can fire against any unit on the other side. The
number of casualties per time unit on the enemy side is then proportional to
the number of firing units and to the power of their guns and vice versa. This
can be mathematically formulated as:

dx / dt = –α · y
dy / dt = –β · x

where x(t) and y(t) are the number of units and β and α are the power of their
arms.

If each unit has the same power (α = β) we can write dx / (αy) = dy /(ax) or
x · dx = y · dy. Integrating this from time zero when the forces are complete
until time T when one of the forces is completely eliminated gives:

∫ x · dx = ∫y · dy  implying  x2(T ) – x2(0) = y 2(T ) – y 2(0)

where the smaller force, here y, is eliminated at time T and thus y(T ) = 0.
Then we can write: x2(0) = y2(0) + x2(T ) which is Lanchester’s Quadratic Law
of Warfare.

0            0

T                 T
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In words this says that after the weaker force is defeated the number of
units remaining in the stronger force can be calculated from the “Pythago-
rean” statement where x(0) is the hypotenuse and y(0) and x(T)  the shorter
sides. This theorem shows the importance of keeping the forces concen-
trated. A weaker army can beat a stronger one if the latter is divided into
parts.

Thus if Force x has 13 units and Force y has 12, Lanchester’s model predicts
5 remaining units for x when the battle is over (132 = 122 + 52). However even
if all other conditions are equal, randomness is part of the game. Therefore,
the model is also reformulated as a Poisson model. This means that during
each increment of time, ∆t · α · y  units on the x side and ∆t · β · x units on the
y side will on average be eliminated. Using Poisson distributions (the most
realistic distribution to be used in a particular case can be discussed) we
have:

∆x = ∆t · F1

∆y = ∆t · F2

F
1

= Po (–α · y · ∆t) /∆t
F2 = Po (–β · x · ∆t ) /∆t

Figure 16.  Lancaster’s Quadratic Law. a) As a deterministic model with the results for

Force X shown as solid lines and the results for Force y shown as dashed lines . b) As a

Poisson model with two realizations where x wins one and y wins the other  battle.

(Technically, the outflows are also limited so that the states cannot become negative.)
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Setting α = β = 0.1 (in some time unit, e.g. minutes or hours) and the initial
values of the forces to x(0) = 13 and y(0) = 12 units gives the model and re-
sults shown in Fig. 16.

Here again, a new quality enters the picture when randomness is added.
For the deterministic model the outcome was given. After adding stocha-
stics, this is no longer the case.

By making a large number of simulations, we can study the outcome in
statistical terms and test the hypothesis that Force x will win, for example
with a probability of 75 %. Making 200 runs gave the victory to x in 126 of the
battles and to y in 74. A rough estimate is that x wins in about 63 % and y in
37 % of the battles. An initial number of 13 units to 12 is thus not enough to
win with a probability of 75 %.

Conclusion: This example shows a general method to include stochastics in
an appropriate way and to run the model a large number of times so that sta-
tistics are obtained. From these statistics you may e.g. test a hypothesis. You
may also calculate what force you need to win with, for example, 95 % pro-
bability.  �

Example 9.  Obtaining statistical estimates
from N simulations – A queuing model
Queuing systems are theoretically studied in queuing theory and in more
complex cases by using Discrete Event Simulation. Such studies are frequent
for e.g. manufacture- or service systems.

In Discrete Event Simulation the model jumps to the next event of interest
like: arrival of a new customer, service for a customer is just finished etc.
Therefore, the mechanism to calculate the next arrival has to be different
from that in Markov or Poisson simulation. In the simplest case of indepen-
dent arrivals and one at a time, i.e. a Poisson process, the time to the next ar-
rival is drawn from a negative exponential distribution. (This is identically
similar, but saves us from stepping time ∆t by ∆t.) However, when the arrival
intensity, λ(t), varies over time we get a problem. Say that the arrival intensity
to a lunch bar is very low at 10 a.m. and thus the next arrival is scheduled for
3 hours later, but at 11 o’clock the intensity rises dramatically. Then the
mechanism where each customer at arrival schedules his successor will not
work. We then have to work with thinning or some other mechanism. Al-
though Poisson simulation was not invented for queue studies, it can easily
include queues as part of a model and handle time varying intensities.

Now assume a M/M/1 queuing system (M stands for Markovian and
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M/M/1 means exponentially distributed inter-arrival and service times and
one service station. Thus, we have a Poisson processes.) The arrival intensity
varies over the day (8*60 = 480 minutes) like: 0.1 · (1 + sin(time / 50)) cus-
tomers per minute. The service rate has a capacity of 0.12 customers per
minute which on average is somewhat more than the arrival intensity. A
mechanism to prevent departures from an empty state is also included in
the last equation below, but not shown in the dynamic diagram.

∆QandS = ∆t · (In – Out )
In = Po[0.1 · (1 + sin(time / 50)) · ∆t] / ∆t
Out = Po[0.12 · ∆t] / ∆t if Out ≤  QandS else Out = QandS

In Fig. 17, the M/M/1 system is shown.

Figure 17.  A M/M1 queue system when the arrival intensity rate varies sinusoidally,

and some devices for calculation of numbers, queue-time and queue-length.

Below the queue model statistics are calculated. The flow of arrivals, In, is
accumulated over time in In_Counter. The queuing customers (all but one in
QandS who is currently being served) are also integrated over time to
Cum_Q_Time. By dividing by the In_Counter and by time, the average time
in queue, Av_Q_Time, and the average queue length, Av_Q_Length, are ob-
tained. One realisation of these quantities as functions of simulation time is
shown in Fig. 18.

To estimate various statistical quantities such as mean, standard devia-
tion, confidence intervals or quintiles, the model is run a large number of
times. For example, to find the 5 and 95 per cent quintiles of the average
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queue length at the end of a day, the model is run say one thousand times.
Removing the simulations with the 50 smallest and the 50 largest end values
gives the quintiles required. In Fig. 19 we have just done 50 simulations so
as not to get a too blurry a figure. Of course we could use these simulation
results to calculate mean, variance, confidence intervals or some other stati-
stical measures.

Conclusions: Firstly, Poisson simulation can efficiently include queuing sys-
tems. Secondly, all kinds of statistics can be estimated from the results of a
number of Poisson simulations.   �

Figure 18.  In, Out, QandS, IN_Counter, Av_Q_Time and Av_Q_Length from one simu-

lation run where the intensity rate varied sinusoidally.

Figure 19.  The average queue length during the day from 50 realizations of the queu-

ing system. The 5 and 95 per cent quintiles of the queue length at the end of the day

can be roughly estimated to be between 2 and 8.5, see arrows.
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Example 10.  Estimating confidence intervals for model parameters
As we have seen above, calculating variations or confidence limits for out-
come quantities is straight forward – just make N runs and use appropriate
statistical formulas. Calculation of confidence intervals for model para-
meters is a more complicated and time consuming task since these are
inputs to the model. This requires a procedure in several steps. The ideas are
well described in Press et al. (1989), Chapter 14.5 “Confidence Limits on
Estimated Model Parameters”. This description refers to Monte-Carlo mo-
dels but is equally valid for Poisson simulation.

To demonstrate the idea, assume that a real dynamic and stochastic pro-
cess like a radioactive decay described in Example 1 above is being observed.
Using a first order deterministic model: dx / dt = –b · x and x(0) = a gives
x(t) = a · exp(–b · t). Fitting this expression to observed data in e.g. a least-
square sense gives estimates of the parameters a and b, say with values a1

and b1 respectively. Repeating the experiment on the real system and the
parameter fitting procedure N times gives N estimates of the two parame-
ters. From these N estimated values of the parameters a and b, statistical
estimates of mean, variance or confidence interval for a and b can be obtai-
ned. Alternatively, they can be presented together as N pairs (ai,bi ) in a two-
dimensional plot where e.g. ellipses including a certain fraction of the pairs
can be drawn.

Repeated experiments on the real system is, of course, the ideal proce-
dure. In practice, however, an epidemiological study, an ecological experi-
ment etc. cannot usually be repeated say 100 times, or we have just one uni-
que observation. To get some kind of statistical estimates the second best is
to repeat the experiments on a model. (“Resampling” from the model.) The
quality of such estimates then depends on how realistic and accurate the
model is. (Of course it would be better to have many real observations, be-
cause the single experiment might have been rather extreme, thus making
the estimates of a and b extreme. If we have a few real experiments, we can
also validate the model and see if the variations in and between experiments
are about the same for system and model.) However this is the usual statis-
tical reality – now we have to do the best with just a single real observation.

In the radioactive decay example, we know from physics that the decay is
a Poisson process. Therefore, the deterministic model: dx / dt = b · x (with
the estimated initial value x(0) = a) is transferred into a Poisson simulation
model given as:

x = x + ∆t · (–F )
F = Po(∆t · b · x) / ∆t



Poisson Simulation 161

Now, making N simulations with the Poisson model gives N realizations. The
idea is that these N realizations can be treated as real experiments on the sys-
tem. Then a new parameter estimation is performed for each of these reali-
zations. Hereby, we get a set of N estimates (a1, b1), (a2, b2), … (aN, bN), on
which appropriate statistics can be applied to calculate mean, variance or
confidence limits of the parameters. Note also that even when the estimates
are uncertain because of few experiments on the real system, the estimates
of the variations can be good if the (dynamic and stochastic) model structure
is realistic.    �

2.2. Other examples from the meso-scale world

The examples above are selected to demonstrate different points when
dynamics and stochastics meet in the meso-scale world. For example in ge-
netics or in demography, the development is often treated generation by
generation in statistical terms. Using Poisson modeling, however, separate
descriptions of male and female generation times as well as variations with-
in each sex can be smoothly included.

Many multi-component systems are very reliable and do not fail until a
number of components are broken. An example of this from the medical
world is multi-hit models, i.e. models where the genome needs several hits
in random order before a disease like cancer will develop. Poisson modeling
is then a nice base for studying such stochastic developments within a dyna-
mic frame. Since every combination of n out of N places may be hit, we have
to make N 2 states in the model. This is easily handled with vector representa-
tion which is available in most modern simulation languages.

In biology, not only predation, but also competition, symbiosis and other
relationships between species, can be modeled.

Infectious diseases may be treated. Classically there is a threshold limit of
susceptible people that deterministically determines if an infected person
triggers an epidemic. With Poisson simulation, stochastics affect the size of
the epidemic and also if it occurs at all (the infected person may recover be-
fore infecting another person). Furthermore, diseases in animals or plants
can be handled in the same way. Sexually transmitted diseases such as go-
norrhoea or AIDS with different behaviours and properties among the sexes
or between groups can also be handled in dynamic and stochastic terms.

In epidemiology and occupational health there is often a need to incorpo-
rate dynamics. Finding an optimal follow-up time is often crucial, because
too short a follow-up gives bias and too long dilutes the results statistically.
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The results of different follow-up times can be clearly displayed, even for
complex models, using Poisson simulation techniques. When designing an
experimental study, it is important to get sufficient numbers of participants,
plants, or whatever to get a good statistical power in the analysis. In epidemi-
ology for example, this can be achieved from tables in very simple situations
where dynamics are not involved. With Poisson simulation this can be
handled in a straight forward way, including any a priori information or
 assumption.

2.3. Generalizations

2.3.1. Not always a Poison distribution
As already stated above, not all distributions fulfil the Poisson assumptions.
When for example the units in a state are momentarily removed, a pulse-
function controls the outflow during an “infinitesimal” time, ∆t. This may
refer to some mechanical action, to the effects of a bomb or pollution etc.
Assume for example that we are studying the effects of screening for a dis-
ease. A usual trick is then to study what happens over time after screening.
This means that the individual time-scales are synchronized according to
time of screening. Therefore, in the model screening occurs simultaneously
for the persons at risk.

Now, say that the subjects having a symptom free pre-stage that should be
found and treated are screened by a test with a sensitivity of 75 %. (On ave-
rage you detect a pre-stage or disease with a probability of S = 75 %.) Thus
the outcome of testing N subjects with the pre-stage, gives a binary outcome

Figure 20.  An oversimplified Poisson simulation model of a study of screening effects.

The screening outflow is drawn from a binomial distribution. When screening with a

test sensitivity of S = 0.75 takes place, the prevalence (AtRisk) is momentarily reduced

by 75 %.
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of positive (p = S = 0.75) or negative (1–p) tests. The number of positive tests
will then be binomially distributed as Binormal (N, p). For large numbers
(say N > 10) this can be approximated by the Normal distribution Normal
(N · p, Sqrt(N · p(1–p))). This is shown in Fig. 20.

2.3.2. Continuous variables
One interesting question is whether Poisson simulation can be extended to
continuous stochastic variables. In many cases we do not have a well defined
number of microbes, but some fungus whose biomass grows continuously.
Technically, it is not a problem to use a continuous statistical distribution to
control an inflow or outflow, but two kinds of problem complicate the situa-
tion. The first is to find a good statistical distribution, and the second is to
handle the distribution’s parameters – often mean and variance. However,
when studying continuous processes we leave the meso-scale in the mea-
ning of moderate number of entities or events as used in this chapter.

3. Conclusions and discussion

3.1. Conclusions

This paper shows how Poisson simulation is used to extend Continuous Sys-
tem Simulation by modeling stochastic aspects of a system, as contrasted to
just adding noise to input, states or output. This technique integrates an ap-
propriate stochastic description into the dynamic structure of differential
equations and thus preserves the close relationship between such equations
and mathematical analysis and understanding.

As demonstrated in the examples above, this approach is powerful, ver-
satile and flexible. It solves a number of problems on the meso-scale region
where dynamics and stochastics are both important.

· We have demonstrated how different structural representations, giving
the same dynamic behaviour, differ considerably when stochastics are
added (Gompertz model in Example 2). This captures important infor-
mation, helping to select a feasible structure or to disqualify infeasible
options.

· Variance may be adjusted by balancing inflows and outflows in a model
(Logistic model in Example 3).

· The interplay between dynamics and stochastics is demonstrated (e.g.
the Lotka-Volterra model in Example 4).
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· New qualities, not existing in pure dynamic models, can appear – such
as extinction in the Lotka-Volterra model (Example 4).

· In experimental design (Example 5), where the statistical aspect is in
focus, it is important that the dynamics are also handled properly. In this
example the follow-up time is an important factor affecting the bias of
statistical estimates. Poisson simulation also enables more powerful,
unbiased analysis based on parameter estimation. A further advantage
of this example is the possibility of treating the initial distribution over
states realistically.

· A Poisson simulation model makes it possible to interpret data against a
structural model in a more powerful way (Life tables in Example 6).

· A huge number of Markov simulations can be replaced by one Poisson
simulation. (Ion channels in neurones in Example 7).

· Variable intensity over time, like changing inter-arrival or service times,
is more easily dealt with than in DES and can therefore easily be incorpo-
rated if needed (Queuing model in Example 9).

· Statistics of different kinds can be easily obtained. After running the mo-
del a suitable number of times, the results of the simulations can then be
treated statistically and presented in terms of mean value, variance,
min, max, confidence interval, quintile etc. It is also possible to test hy-
potheses of the resulting quantity being below or above a certain limit.
Examples of statistical treatment are Lanchester’s Quadratic Law in
Example 8 and the queuing model in Example 9.

· With the technique described in Example 10, model parameters can also
be obtained in terms of statistical estimates. Used together with identi-
fication techniques, this creates an extremely powerful concept. This
technique, suggested for Monte Carlo simulations, is described in Press
et al., 1989 (Chapter 14.5) but is equally applicable for Poisson simula-
tion. In that book it is described as “the only game in town” and extremely
powerful. “In fact, the ability to do Monte Carlo simulations in this fa-
shion has revolutionized many fields on modern experimental science.”

· Compared to methods based on statistics in for example demographic
or genetic problems, the possibility of adding dynamics gives new op-
portunities. For example, letting the generation time vary or be different
between males and females enables more realistic modelling.
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Poisson simulation opens a new approach for modeling a variety of systems
from e.g. biology, medicine, agriculture or society where dynamics and sto-
chastics can be readily treated together in a powerful and flexible way. At the
same time this type of model preserves its near connection to the mathema-
tical and the statistical theory. This opens new opportunities to make more
realistic and accurate models of complex systems without making the model
technically complicated. It also creates new means to analyze stochastic
data to draw conclusions about the real system.

3.2. Methods and tools

During the past year, the author has tested Poisson simulation in various
programming tools such as Pascal, MATLAB and Powersim. Programming
Poisson simulation models is straightforward for all these tools but depends
somewhat on the prerequisites of the tool used.

Poisson-simulation is based on continuous system simulation models
where stochastics are added. This means that methods, tools and results
presentation to handle the dynamic aspects are already present, while the
stochastic aspects in the form of multiple realizations and statistical mea-
sures and procedures have to be added.

A study of a dynamic and stochastic process is performed by a series of N
simulations which display dynamic and stochastic variations. To draw signi-
ficant conclusions various statistical measures have to be calculated. These
measures are of two kinds emerging from variations within a realisation and
those between the N realizations.

Mechanisms and estimates to be calculated within a simulation are con-
structed in the simulation model. This refers, for example, to the implemen-
tation of the stochastic flows of a given distribution and to estimates (mean,
variance etc.) updated during the simulation. In a Poisson model (except for
mechanisms for handling Poisson, normal, uniform and other distributions
usually already implemented in the simulation language) counters, accu-
mulators, collectors of statistics, calculators of least-square errors etc. may
be needed. In the queuing model in Example 9 such mechanisms are inclu-
ded and are shown in Fig. 17.

Tools for controlling a series of realizations, handling various stochas-
tic aspects and analysis of stochastic estimates between those realisation
have to be added. This can be implemented within the simulation language.
However, it is usually easier and more flexible to make a superior, control-
ling program that runs the model a specified number of times, collects the
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results and calculates statistical estimates from the N simulations and pre-
sents them in tabular or graphical form. The statistical analysis is based on
statistical formulas found in elementary books on statistics or in simulation
books like Bratley et al. (1983) or Law and Kelton (1991).

Thus, the controlling program has to communicate with the simula-
tion language where the Poisson model is written, so that dynamics and
stochastics can be studied in one context.
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Appendix:  The Dynamic Diagram

The dynamic diagram is an alternative way to present a system of differential
and algebraic equations. It is based on a bathtub metaphor, see Fig. A1.
It has significant pedagogic merits why it is often used by biologists, ecolo-
gists, medical people, economists and others where the mathematical back-
ground is not as large as for example that of technicians or physicists. A
dynamic diagram is constructed with the following components:

Figure A1.  The bathtub analogy. (Drawing by Liss Timner).

∝
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· A state is represented by the “bath tub” symbol (         ) which holds the
amount or number of objects.

· The content in the state changes because of “physical” inflows and out-
flows (       ).

· Other symbols are constants ( ) and auxiliary quantities for alge-
braic computations ( ).

· To show the limits of the model we let the flows origin from or end in
cloud symbols (     ). (We are not interested in where rabbits go after
death!)

· Everything (except physical flows) affecting a quantity is displayed by
single arrows ( ) from the affecting quantity to the affected one.

To stress that e.g. a flow is random or time dependant the flow symbol may
include a die or a clock:

· A die (    ) in a flow (or auxiliary) symbol denotes that the value of the
flow rate (for each time step) is drawn from a probability distribution.

· A clock (          ) in a symbol denotes that it is a time function.

In simulation languages like Powersim (Powersim Corporation, 1996) or
STELLA (MM High Performance Systems, Inc.) the model is constructed by
placing suitable symbols (icons) on the screen. The exact mathematical ex-
pression and initial values for the states are then defined after double click-
ing the quantity (but are not seen in the diagram). Then the model can be
simulated by calculating time-step (∆t) by time-step. A free copy of a Power-
sim demo, enough to test Poisson simulation, can be downloaded from
<www.Powersim.com>. (Note however that the time-step is denoted “TIME-
STEP” in Powersim.)

Example A1.  A time continuous process
Suppose we want to construct a simple model with one state, one inflow and
one outflow. This can be written as:

dx/dt = F1(x,t ) – F2(x,t )
x(0) = x 0
F

1
 = Some_expression

F2 = c*x
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This process may be numerically described as (Euler):

∆x = ∆t · (F1 – F2)
x(0) = x0
F1 = Some_expression [Defined in the Auxiliary below]
F

2
 = c · x [c is defined in the Constant below]

Such a model is composed of the components treated above and may look
like that in Fig. A2.               �

Figure A2.  A dynamic diagram as it looks in the CSS language Powersim.


