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An Integrated Modeling Process

How can we trust our models? 
A mathematical model is defined by a series of 
equations, input factors, parameters, and variables 
aimed to characterize the process being investigated.

Input is subject to many sources of uncertainty 
including errors of measurement, absence of 
information and poor or partial understanding of the 
driving forces and mechanisms.

This uncertainty imposes a limit on our confidence in 
the response or output of the model. Further, models 
may have to cope with the natural intrinsic variability
of the system, such as the occurrence of stochastic 
events.
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How can we trust our models? 

Good modeling practice requires that the 
modeler provides an evaluation of the 
confidence in the model, possibly assessing the 
uncertainties associated with the modeling 
process and with the outcome of the model itself. 
Sensitivity and Stability Analysis offer valid 
tools for characterizing the uncertainty 
associated with a model.

Techniques
• Model building

– Sensitivity analysis to test accuracy. (If a component 
has to be included, how accurately does it need to 
be known and described?)

– Model fitting (to fit the model to the system data)

• Validation
– Sensitivity analysis (to test if the model is sufficiently 

accurate) 

– Testing how well the model fits ”new” independent 
data from the system.

• Analysis
– Sensitivity analysis (to study effects)

– Optimisation (to find the best result)

– Prediction (to predict what will happen in the future)
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1. Objective function
Sensitivity analysis, optimisation , model fitting 
and prediction requires an objective function!

An objective function V, is a quantitative 
formulation of a purpose. 

V = f(x1, x2, …, xn), where the quantities x1, 
x2,…xn may be states, flows, parameters, initial 
values, input values,….

Examples: (x1 = # rabbits; x2 = # foxes)

V = x1 + x2 (number of rabbits and foxes)

V = 2.8 x1 + 8.5 x2 (biomass of all rabbits and 
foxes)

2.  Sensitivity Analysis

Sensitivity analysis is used to determine 
how “sensitive” a model is to changes in 
the value of the parameters of the 
model and to changes in the structure 
of the model.
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Sensitivity Analysis
To study the sensitivity of an objective function,
V = f(x1, x2, … xn), to changes in a quantity xi. 

- How sensitive is one quantity for a change in 
another?

- Which quantities are especially 
sensitive/insensitive?

- How accurate is our model?

• Absolute sensitivity: V/x
(How much does V change when x changes a little?)

• Relative sensitivity: V/V/x/x
(What is the relative change of V ( in %), when x 
changes by a few percent?)

Examples

– Parameter change: How much do the rabbits 
increase if the fertility constant increases by 0.001?

– Changed input: How many degrees will the room 
temperature increase if the out-door temperature 
increases by one degree?

– Change in initial conditions: How many percent will 
the share of sick potatoes increase if the share of sick 
seed potatoes is increased by 1 percent?

– Structural change: How many  more patients can a 
hospital handle if the number of treatment units is 
increased by 1?

– …
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Parameter sensitivity is usually performed as 
a series of tests in which the modeler sets 
different parameter values to see how a 
change in the parameter causes a change in 
the dynamic behaviour of the stocks. 

By showing how the model behaviour 
responds to changes in parameter values, 
sensitivity analysis is a useful tool in model 
building as well as in model evaluation.

Parameter sensitivity

Sensitivity analysis helps to build confidence in the model by 
studying the uncertainties that are often associated with 
parameters in models. Many parameters in system dynamics 
models represent quantities that are very difficult, or even 
impossible to measure to a great deal of accuracy in the real world. 
Also, some parameter values change in the real world. 

Therefore, when building a system dynamics model, the modeler is 
usually somewhat uncertain about the parameter values he 
chooses and must use estimates. 

Sensitivity analysis allows him to determine what level of accuracy
is necessary for a parameter to make the model sufficiently useful 
and valid. If the tests reveal that the model is insensitive, then it 
may be possible to use an estimate rather than a value with 
greater precision. 

Parameter sensitivity
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Sensitivity analysis can also indicate which 
parameter values are reasonable to use in 
the model. If the model behaves as expected 
from real world observations, it gives some 
indication that the parameter values reflect, 
at least in part, the “real world.”

Parameter sensitivity

Sensitivity tests help the modeller to understand 
the dynamics of a system.

Experimenting with a wide range of values can 
offer insights into behaviour of a system in 
extreme situations. 

Discovering that the system behaviour greatly 
changes for a change in a parameter value can 
identify a leverage point in the model — a 
parameter whose specific value can significantly 
influence the behaviour mode of the system.

Parameter sensitivity
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Sensitivity Analysis 

Sensitivity Analysis can be used to determine:

1. The model resemblance with the process under study

2. The quality of model definition 

3. Factors that mostly contribute to the output 
variability 

4. The region in the space of input factors for which the 
model variation is maximum 

5. Optimal - or instability - regions within the space of 
factors for use in a subsequent calibration study 

6. Interactions between factors

Sensitivity Analysis: Methodology 

There are several possible procedures to perform 
sensitivity and stability analysis. The most 
common sensitivity analysis is sampling-based. 

A sampling-based sensitivity is one in which the 
model is executed repeatedly for combinations of 
values sampled from the distribution (assumed 
known) of the input factors. 

Other methods are based on the decomposition of 
the variance of the model output and are model 
independent (see references)
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In general, sensitivity analysis is performed by 
executing the model repeatedly for combination of 
factor values sampled with some probability 
distribution. The following steps can be listed:

1. Specify the objective function and select the input of 
interest 

2. Assign a distribution function to the selected factors 

3. Generate a matrix of inputs with that distribution(s) 
through an appropriate design 

4. Evaluate the model and compute the distribution of 
the objective function 

5. Select a method for assessing the influence or relative     
importance of each input factor on the objective 
function. 

3. Optimisation
The desire for optimality (perfection) is inherent for 
humans. The search for extremes inspires mountaineers, 
scientists, mathematicians, and many others. A beatutiful
and practical mathematical theory of optimisation (i.e. 
search-for-optimum strategies) is developed since the 
sixties when computers become available. Every new 
generation of computers allows for attacking new types of 
problems and calls for new methods. 

The goal of the theory is the creation of reliable methods
to catch the extremum of a function by an intelligent 
arrangement of its evaluations (measurements). This
theory is vitally important for modern engineering and 
planning that incorporate optimisation at every step of a 
complicated decision making process. 
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Optimisation (contd)

Naturally, one wants to produce more goods, 
with lowest cost and highest quality. To optimize 
the production, one either may constrain by 
some level the cost and the quality and 
maximise the quantity, or constrain the quantity 
and quality and minimise the cost, or constrain 
the quantity and the cost and maximise the 
quality. There is no way to avoid the difficult 
choice of the values of constraints.

"Better be healthy and wealthy than poor and ill" 

Some Frivolous Remarks on 
Optimisation 

The inherent human desire to optimize is cerebrated in 
the famous Dante quotation:

”All that is superfluous displeases God and Nature
All that displeases God and Nature is evil.”

In engineering, optimal projects are considered beautiful and 
rational, and the far-from-optimal ones are considered ugly and 
meaningless. Obviously, every engineer tries to create the best 
project and he/she relies on optimisation methods to achieve the 
goal.

1265 - 1321
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The principle of least action proclaims:

”If there occur some changes in nature, 
the amount of action necessary for this 
change must be as small as possible”.

This principle proclaims that the nature always finds the 
"best" way to reach a goal. It leads to an interesting 
inverse optimization problem: Find the essence of 
optimality of a natural "project." 

1698 - 1759

Maupertuis

The trees of Ponderosa pine and Utah Juniper 
in windy areas of South Utah possess spiral 
wood fibers that wiggle around the trunk. 

The question is: Why?

It may be postulated that morphology of a 
bio-structure is optimal with respect to some 
evolution goal, which simply means that it is 
best adapted to the environment.
The question is: 
In what sense is the structure optimal?

Optimality in Nature
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Optimality 
in Nature

Optimisation (contd)
Optimisation is to find the maximum or minimum of a 

function that depends on a number of parameters.

Since: max(function) = - min(-function),
it is sufficient to treat only one of these 
cases; e.g. minimisation!

Optimisation can be performed by different methods:
• Analytically (for more simple functions;  df/dx = 0).
• Operations Research techniques like Linear Programming, 

Dynamic Programming, Game Theory 
• Numerical search methods can be used for all kinds of 

models, e.g. for simulation models. (See below). 

x

f(x)f(a)

a

x

-f(x)-
f(a)

a
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Optimisation
The term optimisation, or mathematical programming, 
refers to the study of problems in which one seeks to 
minimise or maximise a real function by systematically 
choosing the values of real or integer variables from 
within an allowed set. This problem can be represented 
in the following way

– Given: a function f : A → R from some set A to the 
real numbers 

– Sought: an element x0 in A such that f(x0) ≤ f(x) for 
all x in A ("minimisation") or such that f(x0) ≥ f(x) 
for all x in A ("maximisation").

Such a formulation is called an optimisation problem or 
a mathematical programming problem. Many real-
world and theoretical problems may be modeled in 
this general framework.

Optimisation (contd.)

Typically, A is some subset of the Euclidian space Rn, often 
specified by a set of constraints, equalities or inequalities that 
the members of A have to satisfy. The domain A of f is called 
the search space, while the elements of A are called candidate 
solutions, or feasible solutions.

The function f is the objective function, or cost function. A 
feasible solution that minimises (or maximises, if that is the 
goal) the objective function is called an optimal solution.
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Optimisation (contd.)
Generally, when the feasible region or the objective function of 
the problem does not present convexity, there may be several 
local minima and maxima, where a  local minimum x* is 
defined as a point for which there exists some δ > 0, so that for 
all x, such that

the expression  f(x*) ≤ f(x) holds; that is to say, on some region 
around x* all of the function values are greater than or equal to 
the value at that point. Local maxima are defined similarly.

Note: A large number of algorithms proposed for solving non-convex 
problems are not capable of making a distinction between local 
optimal solutions and rigorous optimal solutions, and will treat the 
former as actual solutions to the original problem.

The task is to find that combination of quantity values, x1, x2, 
…xn, that maximises/minimises the objective function V.

The quantities can be:
• Discrete: number of tractors, cooks, variety A or B, etc.  

(Test the different alternatives separately.)

• Continuous: energy price, water content, process time, 
amount of seed used, etc. Continuous parameters can 
have an “infinite” number of values. (Use a search 
method.)

Optimise V by finding the best combination of 
some quantities (parameters) x1, x2, …xn

MODEL
V=f (x1, x2, …xn)Input u(t)

x1 x2 … xn
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Local and global maxima

x1

V
Global maximum

Local maxima

x1

x2

Two views of the same ”landscape”

x2

For different parameter values (x1, x2) the objective function 
gets different values. But the landscape is invisible. Each 
simulation (fixed values of x1 and x2) gives only the value of 
V(x1, x2) at the investigated point. (Compare mapping the 
depth of a lake from a boat by using a stone in a string.)

Search methods start to evaluate (simulate) the result at 
one point (x1, x2). By systematically testing new points, it 
searches the way up to a top (or down to a bottom). But 
depending on the starting point, it finds a local or a global 
optimum! (Knowledge about the system or using different 
starting points handle this problem.)

x1

x2
V
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Search methods

A.  Search methods for one dimension
 Golden section search

B.  Search methods for several dimensions
B1.  Methods using only function values

 Tabulation
 Search in co-ordinate directions
 Simplex methods

B2.  Methods using function values and first derivatives
 Steepest descent method

B3.  Methods using function values, first and second 
derivatives
 Newton methods
 Quasi-Newton methods

Breaking criteria
For all search methods we need a criterion when to end 
the search. This is accomplished by specifying a number, 
, such that the search ends when: a) The improvement in 
parameter space is less than  or b) The improvement of 
the objective function is less than  or c) A mixed criterion 
based on a) and b). 

Break when:
a)  |xi+1 - xi| < 1

b)  |V(xi+1) - V(xi)| < 2

c) Both a) and b) 
should be true.

V

x
xi xi+1 xopt

V(xi+1)
V(xi)



< 1 ?

< 2?{
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Nelder-Mead simplex search of 
optimal points in 2-D space

The steepest descent method

The method of Steepest Descent approaches the minimum in a zig-
zag manner, where the new search direction is orthogonal to the 
previous.
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The steepest descent method

The convergence of the method of Steepest Descent. The step size 
gets smaller and smaller, crossing and recrossing the valley (shown 
as contour lines), as it approaches the minimum. 

Robustness
The search process first moves to the ”goal area”, and 
there it refines the search. Close to the goal the Newton 
and Quasi-Newton methods converge very rapidly 
because the curvature in that restricted area becomes 
well mapped by these methods.

But in a more irregular landscape (with discontinuities in 
the objective function or its derivatives) gradient-, 
Newton and Quasi-Newton methods are not very robust. 
They may fail.

Only when you need a very high precision are such 
methods  recommended. For problems in biology, 
medicine, agriculture etc. a simplex optimiser is very 
robust and reasonably efficient. The simplex method 
also smoothly handles constraints.  
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Constraints

Often, you are not allowed to use any combination of the 
parameter values  x1, x2,…, xn. The parameter space is 
constrained.

Example: You want to maximise the economic outcome of 
potato cultivation which depends on harvested amount and 
quality. You control parameters like amount (A) and quality
(Q) of seed potatoes, time for putting them into the soil (T), 
amount to spray (S) and irrigation (I), etc. But there are 
restrictions (constraints):

- Setting the seed:   April 10 < T < May 20.  
- Water supply is limited:  I < 2600.
- Limited economic resources:   k1*A*k2*Q + k3*S + k4*I < 15000

The optimiser and the model
An optimiser is a program that controls the parameter 
settings of the model (mathematical or simulation 
program) and runs the model repeatedly, using one of 
the methods described above. After each run the value 
of the objective function is returned to the optimiser 
which sets the values of x1 x2 ...xn for the next run, and 
so on until the break criterion specified to the optimiser 
is fulfilled.

Computer program

MODEL
VInput

x1  x2 ...xn

Optimiser
Function eval: 1 run
(Gradient: n runs)
(Curvature: n*n runs)
(Line search: m runs)
Break criterion

x1 x2 ...xn

V
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4.  Model Fitting (Identification)

Two ways of model building:

1. Model building using physical, chemical or other 
well known laws which directly give the model 
equations.

2. Model fitting (identification). The model which 
behaves most like the real system is selected .

Model fitting can be performed by:

A) Non-parametric or
B) Parametric methods

Model fitting

A) Non-parametric methods: The system is disturbed to reveal 
its dynamic behaviour.
- Transient analysis (Impulse response, step response ...)
- Frequency analysis and Fourier analysis

These methods display the relations between input and output in a 
way that can be mathematically described (- an external model).

B)  Parametric methods: System identification by model fitting. 
Identification refers to both model structure and parameters 
(parameter estimation).

Identification means specification of the model ( on the basis of 
input and output) so that it behaves like the real system as much as 
possible (see below).
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A) Non-parametric methods

• Impulse

• Step

• Sinusoidal 
variations

Transient analysis - disturb the system. 

t

t

SYSTEM

SYSTEM

V
t

t

V

SYSTEM
sin(w*t) A*sin(w*t+B)

Mapping the attenuation A and the phase lag B for all frequencies 
w gives a description of the input-output relation.

Automatic control treats how a model structure and quantities 
can be deduced from these kinds of experiments.

Impulse
response

Step
response

Frequency 
analysis

Non-parametric methods (contd.)

Transient analysis shows the relation between input  
(impulse or step) and output (impulse or step response) 
for a system. This gives a black box description of the 
system. The same is true for frequency analysis.

u y

We then get a differential equation relating output, y, to 
input, u. But no structure of states are involved.



22

B) Parametric methods
1a) Choose a model structure.
1b) Fit the parameter values so 

that model and system
behave  in the same way.

2a) Try another model structure.
2b) Fit the parameter values. 
Etc.

Parameter estimation is finding 
that set of parameters that 
minimises the difference 
between model’s and system’s 
behaviour.

The square of the 
difference: 
e2 = (ysystem - ymodel)2

is to be minimised
(Least-square fit)

Model

System

x1  x2 ...xn

+
-

ysystem

ymodel

e(t)

Input

Least-square calculations
The difference  e(t)  = ysystem - y model is squared and 
integrated over the time period studied. V =  e2(t) dt
becomes our objective function to be minimised with the 
help of an optimiser.

In e.g. Powersim this can be done within the model:
Ysyst=TABLE(...)
.....
Ymod= ...
…..
e.K=Ysyst - Ymod
e2=e*e
V=V+dt*e2
V=0  (initial value)

Then, let an optimiser run the model over and over again 
searching for the set of parameter values giving the least-
square value of the difference. This will minimise V.

ysystem

ymodel

e

V

e2
+

-
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The model you successfully fitted to 
the system may still be a bad model!

When you fitted the model to the system, you tuned a 
number of quantities (parameter values, constants, 
initial values etc.). The accumulated value of squared 
errors (V) also gave you a measure of how well the 
model was fitted. However, the model structure may 
still be poor. Perhaps you should try another model 
structure and see if that can be even better fitted to 
the system (giving a smaller V-value). Or perhaps you 
can reach the same value of V with a simpler model.

Remember: Fitting a model to a system also includes model 
structure!!!

Over-parameterisation
You can always fit a system behaviour with a complex 
enough model. This will require a model with many 
parameters. 

If the number of unknowns (parameters) in the model 
exceeds the information available (for model fitting and 
validation) we have an over-parameterised model. 
Such a model can give you any stupid result.

E.g. Your model is an equation-system of 5 equations 
that has 6 unknown quantities. Then there are infinitely 
many different solutions!
E.g. You fit three points with a polynomial model of 
degree 2 (y=a+bx+cx2) and get a unique solution. But if 
you use a 3:rd degree polynomial (y=a+bx+cx2+dx3) 
you get an infinite number of different solutions.
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5.  Prediction
Prediction - prophesies about the future - are inherently 
problematic. Fitting a model to a system so that the 
model’s behaviour agrees with the system’s under 
(historically) known conditions is ”trivial”. But fitting the 
model to the future (where information about the system 
structure and behaviour is unknown) is not possible. 
Instead, you have to make a number of assumptions 
(guesses) about the future. (Especially that ”nothing new” 
happens!)

Also validation against future data is impossible. 
Therefore: The calculation of the future development by 
drawing a trend or by simulating a model which was never 
fitted or validated is extremely risky. 

Always be sceptical to predictions!

Is the world predictable?
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Prediction (contd)

However, planning requires prediction:

- Weather forecast
- Economic planning
- Oil supply in 2015
- Number of school children five years from now

The better information you have, the more reliable 
the prediction.

Prediction methods
Expanding the trend:
(Very primitive).

Simulating the future:
Dynamic models built on 
known relations can do more. 
But the model is not perfect 
and there is a risk for 
something not foreseen (oil 
crises, war, failure of crops...). 

The precision decreases with 
the time span. E.g. Weather 
forecasts are often rather good 
only for a few days ahead.

now

Warning: Wishful thinking 
easily replaces knowledge in 
the model!

Since the model was never fitted and validated to future data -
don’t expect too much from its predictions of the future!

now
t

t

Dynamic 
model
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The butterfly effect
sensitivity to initial conditions

”The flaps of the wings of a butterfly in Amazonas may cause a 
blizzard in Uppsala” 
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Predictions of human development

Gapminder
www.gapminder.org

Thank you!


