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Floral chemistry mediates plant–pollinator interactions through

floral scents and reward components. Although improved

techniques have increased interest in studying floral volatiles

and nectar chemistry, these two foci have generally been

studied in isolation. The ecological functions of floral chemistry

have been relatively well studied and focused on pollinator

behaviour. While studies comparing chemistry between plant

parts and across phylogenies are increasing, work on the

evolution of floral chemistry and the importance of community

context in mediating pollinator responses is lacking. Future

research should concentrate on more holistic studies that

include both signal and reward chemistry to understand the

relative contribution of these complex and dynamic floral traits

to the ecology and evolution of plants and their pollinators.
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Introduction
Animal-pollinated plants generally attract pollinators by

advertising their floral rewards with visual and olfactory

signals. While the role of plant chemistry in mediating

plant–pollinator interactions has long been recognized,

technical advances have made floral chemical analyses

more feasible, accurate and accessible to ecologists and

evolutionary biologists. Although measuring floral chem-

istry remains challenging (Box 1), the field is flourishing.

Studies on floral volatiles have dominated the literature,

while nectar chemistry has lagged behind until very

recently, likely due to additional difficulties in analyzing

trace compounds in small volumes of nectar. Beyond
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technical differences in examining floral volatiles and

nectar chemistry, these two chemical aspects of floral

biology have remained somewhat distinct fields. Our

review focuses on the most recent work addressing

how floral chemistry contributes to the ecology and evo-

lution of plant–pollinator interactions (Figure 1). Specifi-

cally, we highlight the theoretical and empirical links

between floral volatiles and nectar chemistry and sum-

marize pollinator responses to plant chemistry with

the aim to create an integrated view of floral chemical

ecology.

Floral chemistry functions
Floral volatiles act as long distance attractants and pro-

vide unique chemical signatures to flowers, thereby

influencing pollinator preference and constancy, while

nectar chemical composition can affect initial foraging

decisions, time pollinators spend foraging and the like-

lihood of visiting a conspecific flower. Current advances

in understanding functional differences of floral scent

often compare variation in systems with different pollen

vectors [1]. In Mimulus, bumblebee preference is driven

by its antennal sensitivity, which may subsequently

contribute to reproductive isolation between plant spe-

cies [2�]; similar preference patterns are detected in

pollinating beetles of Protea [3]. However, increased

attention to repellent/defensive aspects of floral volatiles

[4,5] suggests that limiting our view to pollinator attrac-

tion severely reduces our understanding of floral chemi-

cal trait function.

Historically, nectar sugars were assumed to drive prefer-

ences, however the prevalence of nectar secondary me-

tabolites led to a reassessment in light of these putatively

noxious compounds. While nectar compounds can deter

pollinators and alter their behaviour on flowers, experi-

ments often find these negative effects only with con-

centrations significantly higher than occur naturally in

nectar [6,7]. At low concentrations, nectar secondary

metabolites may be neutral or even attractive and their

functions may go beyond simple attraction/deterrence.

Caffeine-enriched nectar improved honeybees’ ability to

retain associations between floral scent and reward due to

caffeine’s effect on adenosine receptors in the insect

brain [8��]. Furthermore, plants may seek to manipulate

pollinators into consuming less nectar, especially if

this leads to higher outcrossing rates [9]. Bumblebees

and birds consume less nicotine-enriched nectar [7,10]

and honeybee nectar storage declines with increased

nectar nicotine concentrations [11]. However, sugar can
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Box 1 Studying dynamic and complex traits

Floral nectar and scent, composed of multiple chemical constituents

mixed together in precise ratios, are both complex and highly

variable. The chemical composition of nectar and scent is often

dominated by attractive components but can also contain deterrent

or even toxic secondary metabolites. Furthermore, floral chemistry

can change in response to abiotic and biotic factors, with changes

occurring immediately or over the flowering period. Floral scent and

nectar also often exhibit temporal cycles in production reflecting

strategies to optimize pollinator attraction and/or antagonist deter-

rence. A major challenge to studying the chemical ecology of

pollination therefore lies in the fact that chemical traits are often in

flux, making it difficult to measure, modify and effectively gauge

pollinator responses. For example, do single snapshots of chemical

profiles (either scent or reward) tell us anything about the true

phenotype of the plant? And if so, does this represent conditions that

floral visitors encounter in the field? Ultimately, finding general

patterns in or responses to floral chemistry may require substantially

more replication and more sophisticated statistical techniques than

studies focused on less dynamic or complex floral traits. However,

overcoming these challenges offers an unparalleled opportunity to

understand the ecology and evolution of plant behaviour.
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modulate responses; birds and honeybees tolerate higher

nicotine concentrations with increased sugar levels

[10,11]. Thus nectar chemistry may reflect a complex

interplay of pollinator behaviours and tolerances in addi-

tion to alternate functions such as protection from antago-

nists. Similar processes may drive function and evolution

of pollen chemistry, however this is a poorly understood

aspect of floral chemistry (Box 2).

Comprehensive studies of floral advertisements and rewards

(including pollen) are required to understand whether chem-

istry has additive or emergent functions in plant–pollinator

interactions. Furthermore, pollinator foraging constancy can

be enhanced for multimodal signals such as colour and odour

combined; in Ipomopsis, the volatile indole is sufficient to

attract hawkmoth pollinators but does not elicit nectar prob-

ing behaviourwithout the appropriate petal colour [12]. Thus

inroads into understanding functions of floral chemistry must

include the broader context of floral traits.

Whole plant chemistry
Early studies on floral chemistry focused on analysing

floral headspace or nectar in isolation but more recently,
context
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Box 2 Pollen chemistry

For many plant species, pollen is simply the vehicle for gamete

transportation, however insects often exploit pollen as a resource.

Pollen can therefore play a dual role in many systems, having both

sexual and reward functions and its chemical composition may

influence how insects interact with flowering plants. Like nectar,

pollen contains both nutritional and non-nutritional components, with

recent studies finding compounds such as alkaloids [47] and non-

protein amino acids [48]. These compounds may have negative [48]

or neutral [49] post-consumption effects and may prompt pollen-

collecting insects to seek multiple pollen sources in order to reduce

costs associated with pollen toxins [50]. Despite the importance of

pollen protein for many social and solitary bees, studies on pollen

chemical ecology are sparse. This area of research is rich in

questions, poor on data and deserves significantly more attention.

Box 3 Nectar microbes and floral chemistry

Microbes in nectar and their effects on pollination are an expanding

field of research. Nectar yeasts have been characterized in a number

of systems but only a few studies have also examined nectar

bacteria, which can also be very common [51]. Flower visitors can

transport nectar microbes, which alter nectar sugar composition [52]

and nectar pH [53]. However, microbe identity may be important for

these effects; nectar bacteria but not yeast weakened mutualistic

interactions between Mimulus aurantiacus and its hummingbird

pollinators [53] and honeybees discriminate between nectars

containing bacteria or yeast and avoid those with bacteria [54].

Yeasts in nectar may even benefit plant fitness, as seen in

Delphinium nuttallianum [55�]. Nectar secondary compounds have

been hypothesized to play a role in flower microbe interactions,

although data in this area are lacking. However, some floral scents

can act as defence against bacteria pathogens [56], supporting the

hypothesis that floral chemistry has antimicrobial functions.
researchers have taken a comparative whole plant ap-

proach to assess patterns of production, expression and

allocation of compounds and test functional hypotheses.

Similar secondary metabolite profiles across tissues sug-

gest that nectar chemistry reflects shared biosynthetic

pathways or pleiotropy [13��]. Whole plant studies show

many nectar secondary metabolites are found throughout

plants and concentrations are positively correlated across

plant parts in many species, although secondary metabo-

lite concentrations are often orders of magnitude smaller

in nectar relative to flowers, leaves [6,13��,14] and phloem

[15]. However, flowers often possess distinct chemical

components or ratios/concentrations (especially in floral

scents), which may either signal or shape functional and

adaptive differences between flowers and other plant

parts. The leaves and flowers of Brassica rapa emit nearly

identical volatile profiles but compound concentrations

were not correlated [16]. In milkweeds (Asclepias species),

composition and concentrations of individual cardeno-

lides varied across plant parts and two species had a

unique nectar compound [6]. Further, leaf and floral

volatiles may differ but act synergistically to attract visi-

tors, suggesting that volatiles need to be understood in a

whole plant context [17]. Differences in floral chemistry

of leaves and flowers are not unexpected, as plants are

under selection to attract pollinators to flowers but deter

herbivores from leaves. Given that the overall chemical

composition of nectar differs significantly from phloem,

indicating modification of nectar precursors via metabo-

lism or selective secretion [15], there is mounting evi-

dence to refute that secondary metabolites simply leak

into nectar.

Community context
Although plant–insect interactions are often studied in a

pair-wise fashion, plants and their visitors are embedded

in communities of interacting organisms. Community

context can influence pollinator choices that may alter

evolutionary trajectories for species. For example, al-

though nectar alkaloids are often deterrent, pollinators

can prefer alkaloid-enriched nectar when paired with
www.sciencedirect.com 
higher sucrose concentrations than alkaloid-free counter-

parts [18]. Within communities environmental factors

may impede searching and animal visitors must learn

to detect floral signals amongst complex backgrounds.

Manduca sexta can maintain its innate preference for

certain volatiles while learning to associate new odours

with rewards, but background plays a large role in their

ability to detect odours [19,20��]. Similar general patterns

are seen for bumblebees where foraging behaviour is

enhanced when colour and odour are more conspicuous

relative to background stimuli [21]. While gains in un-

derstanding pollinator behaviour are being made in lab

settings, much less is known about how these interactions

play out in nature. In a Mediterranean shrubland, floral

signalling, rewards and visitation for the entire commu-

nity varies seasonally [22��] suggesting whole communi-

ties may adjust the intensity of signalling and reward

production to pollinator abundance, investing more in

recruiting during lean times. However, floral scents and

rewards as well as subsequent interactions with mutual-

ists, may be modified by herbivory [23,24]. Further,

recent studies have honed in on the community ecology

of nectar itself, addressing interactions of nectar microbes

and their influence on nectar chemistry (see Box 3),

highlighting that community context acts on several

scales.

The community perspective raises fundamental ques-

tions about signal and reward ecology and evolution that

remain unexplored. For example, does the intensity of

selection on floral scent vary with community back-

ground? What is the role of facilitation and competition

between species on the types and intensity of floral

scents? How do rewards of co-flowering species affect

evolution of nectar chemistry? Can plants adjust signals/

rewards depending on the community context? And how

do interacting networks of mutualists and antagonists

shape floral signals and rewards?
Current Opinion in Insect Science 2015, 8:41–46
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Evolution of floral chemistry
Floral chemistry is hypothesized to be the product of

natural selection yet research is only just considering the

micro-evolution of these traits [25]. Selection on volatiles

can be detected [26] and can be stronger than selection on

other advertisements such as flower size or colour [27].

Indirect evidence for the potential for selection on nectar

chemistry comes from fitness effects of pollinator

responses. For example, nectar alkaloids reduced pollen

receipt and subsequent Gelsemium sempervirens fruit set

[28], however nectar alkaloid enrichment in Delphinium
barbeyi had no plant fitness effects [29]. Because floral

signals and rewards may be linked, especially if signals

are honest [30], correlational selection may drive their

evolution. Nectars themselves can be scented [31] sug-

gesting a strong possibility for correlated evolution. Rapid

evolution of floral scent is suggested by examples of

reduced selfing in Abronia umbellate populations, where

attractive scents are presumably no longer needed [32�,29],

and variation among horticultural varieties of Phlox [33].

Further, selection on the eugenol synthesis gene in Gym-
nadenia suggests changes to single genes can increase floral

scent complexity [34]. Although some biochemical path-

ways and genes associated with the production of alkaloids

and/or floral volatiles have been characterized, heritability

of their variation is largely unknown. Recent advances in

understanding the genetic basis of chemistry include map-

ping the floral scent QTLs of cowpea [35] and correlating

floral scent and AFLP data in Sorbus [36]. Use of hybrids

has also shown the genetic bases of scent production can be

complex, as hybrid scent can differ from parental scent or

hybrids can express the parental mean depending on

compounds [37,38]. There is a striking lack of data on

the heritability of nectar chemistry and uncovering the

genetic basis of these traits should be a research priority.

Evidence for floral chemical trait evolution comes from

local adaptation and phylogentic studies, often suggesting

that pollinators likely play a role. For example, in the

rewarding Gymnadenia odoratissima and sexually decep-

tive Ophrys sphegodes, scent likely contributes to local

adaptation of pollinator communities [39,40�]. In Litho-
phragma, where Greya politella moths act as both pollina-

tors and seed parasites, closely related Lithophragma
species exhibit extreme variation in floral scent [41�] that

seems to drive moth preference for their local host species

[42]. Broad phylogenetic sampling shows nicotine con-

centrations in Nicotiana nectar are lower in pollinator-

dependent species [13��], suggesting that pollinators

could drive chemical composition of nectar. Pollinator-

mediated selection also likely drives floral scent evolu-

tion, as suggested by two meta-analyses of oviposition site

mimics [43��] and beetle-pollinated plants [44]. Research

incorporating the heritability of chemical traits, pollinator

responses to trait variation, and pollinator-mediated phe-

notypic selection will greatly advance our understanding

of the evolution of nectar and volatile chemistry.
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Future directions
Studies that bridge spatial and temporal scales to address

how floral chemistry affects multispecies interactions,

feedback within communities and the co-evolution of

plants and their pollinators will push forward the bound-

aries of our field. Recently, research considering floral

chemistry in a changing climate has found that increases

in temperature could have species-specific effects on

volatile emissions [45] and, coupled with increases in

carbon dioxide and nitrogen, can also affect nectar com-

position [46]. However, without a more comprehensive

understanding of floral chemistry in shaping relationships

between plants and pollinators, it becomes difficult to

predict how shifts in chemical composition might affect

the stability and sustainability of key mutualisms. The

chemical ecology of plant–pollinator interactions is an

emerging field ripe for exploration and will no doubt

provide incredible insight into the ecology and evolution

of species interactions.
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