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Introduction

The reception of chemical cues in the environment is essen-
tial for the survival of almost all organisms. Accordingly, 
most terrestrial animals have evolved olfactory systems with 
remarkable sensitivities and discriminatory power to detect 
relevant volatile chemical compounds and olfaction largely 
controls their behavior. Insects rely on a powerful sense of 
smell to locate habitats and food sources, to identify mat-
ing partners and oviposition sites or to escape predators 
[1–3]. They may encounter chemical signals emitted from 
conspecifics, including sex pheromones, alarm pheromones 
or aggregation pheromones [4, 5] but also exploit chemical 
compounds emitted from very different organisms, such as 
predators and host plants [2, 6] (Fig. 1). The various chemi-
cal compounds are received by OSNs housed within sensilla, 
hair-like structures that extend from the insect cuticular sur-
face on olfactory appendages [7], most notably the antennae 
and maxillary palps. Odorous molecules are thought to dif-
fuse through pores in the sensilla walls, entering the sensil-
lum lymph where they interact with odorant-binding proteins 
(OBPs) and are transferred through the aqueous medium 
towards the dendrites of OSNs [8, 9]. Adequate compounds 
induce a depolarization of responsive neurons leading to 
action potentials that can be monitored by single sensillum 
recordings [10–12]. The electrically encoded information 
is conveyed to the antennal lobe and the neuronal signal is 
finally decoded by the insect brain.

The recognition of odorants and the process of chemo-
electrical transduction are mediated by specific receptors; 
these integral membrane proteins reside in the dendrites of 
the sensory neurons. To some extent, the role of receptors for 
odorants resembles that of receptors for neurotransmitters, 
converting chemicals signals into electrical inputs and thus 
achieving a flow of information. However, there are some 
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differences between olfactory receptors and neurotransmit-
ter receptors. Synaptic receptors are exposed to millimolar 
concentrations of water-soluble neurotransmitters released 
in the synaptic cleft where the chemical content is regulated 
by the local cellular environment [13]. In contrast, olfac-
tory receptors face a far more complex environment and the 
probability that a cognate odorant reaches an appropriate 
receptor is supposed to be orders of magnitude lower than 
an interaction of a neurotransmitter with its receptor at the 
synapse. Thus, the receptors for odorants are likely to be 
more sensitive towards their cognate ligands than transmit-
ter receptors [14].

For recognition of olfactory signals, insects use several 
families of receptor proteins, including odorant receptors 
(ORs), ionotropic receptors (IRs) and carbon dioxide-sens-
ing gustatory receptors (GRs) [15, 16]. Among these, ORs 
have been most extensively studied. Initially, insect ORs 
were thought to be seven-transmembrane domain (7-TMD) 
proteins acting as G protein-coupled receptors (GPCRs) [17, 
18], similar to their counterparts in vertebrates and nema-
todes. However, they lack sequence similarity with GPCRs 
and have an inverted topology with an intracellular N-termi-
nus and an extracellular C-terminus [19–21]. It is now gener-
ally accepted that insect ORs form a greatly expanded phy-
logenetic lineage derived from insect GRs [22, 23] and that 
they are not related to GPCRs [19]. Accordingly, it seems 

unlikely that insect ORs transduce chemical signals via G 
proteins but rather form heteromeric complexes with an OR 
co-receptor (Orco) that operate as non-selective cation chan-
nels [24, 25]. Yet, the results of several studies, most notably 
on moths, indicate the involvement of G protein-mediated 
activation of second messenger cascades in OR-expressing 
OSNs and it remains presently elusive whether all insects 
have adopted solely ionotropic mechanism for responding to 
olfactory signals from the environment or whether in some 
species, metabotropic processes may be used.

OR subtypes are expressed in spatially restricted sub-
populations of antennal neurons [17, 26]. Functional stud-
ies have indicated that insects ORs respond to multiple 
ligands and that a distinct compound can activate multiple 
ORs [27]. Such overlapping response spectra are expected 
to allow discrimination of a larger number of odorants than 
predicted from the repertoire of ORs [28] and are the basis 
for combinatorial coding of the odor environment [29, 30]. 
However, this view has probably to be extended based on 
recent studies indicating that certain odorants carrying vital 
environmental information are recognized by highly spe-
cific receptors leading to the activation of dedicated neuronal 
pathways [31, 32]. For the recognition of sex pheromones, 
such labeled line pathways are well proven [33–35]. They 
are initiated by ligand-induced activation of specific pher-
omone receptors (PRs) that represent a subset of the OR 
superfamily and require a CD36 homolog called “sensory 
neuron membrane protein” (SNMP) for proper function [36, 
37].

In this review, we highlight the discovery of the insect 
olfactory receptors and describe the recent advances in the 
identification of receptor candidates in numerous insect 
species that opened the avenue for comparative and phy-
logenetic studies. Furthermore, we outline experimental 
approaches that made it possible to explore the ligand speci-
ficity of distinct receptor types and to elucidate the unique 
roles of the proteins in the primary events of the chemo-
electrical transduction process. Finally, we summarize 
and discuss current knowledge suggesting ionotropic and 
metabotropic mechanisms of olfactory signal transduction 
in insect OSNs.

Olfactory receptors

Olfactory receptors in the dendritic membrane of OSNs are 
responsible for the detection and discrimination of odors. In 
insects, the receptors for airborne volatiles belong to three 
classes of chemoreceptor proteins (Fig. 2). In most species, 
the ability to detect a vast array of chemically diverse odor-
ants (including pheromones) is based on a class of 7-TMD 
proteins, the odorant receptors (ORs) [17, 26, 27, 34, 38, 
39]. Insects express divergent families of OR genes, albeit 

Fig. 1   Insect odor world. In their natural surroundings, insects 
encounter an almost unlimited number of chemical substances. This 
includes pheromones emitted from conspecifics and used for intraspe-
cific communication as well as semiochemicals released by food 
sources, oviposition sites, predators or competitors. The insect olfac-
tory system allows sensitive detection and precise discrimination of 
the relevant cues from the odor world



Access to the odor world: olfactory receptors and their role for signal transduction in insects﻿	

1 3

the number of different receptors in a given species var-
ies between insect groups, ranging from 10 to several hun-
dred ORs (reviewed in [40]). The second class of olfactory 
receptors are the so-called ionotropic receptors (IRs) that are 
related to ionotropic glutamate receptors (iGluRs) and seem 
to be predominantly tuned to certain short-chain organic 
acids, amines and aldehydes [41]. Typically, only a relatively 
low number of different IR types (10–20) are expressed in 
the olfactory system of an insect [42, 43]. The third class of 
olfactory receptors comprises another small group of 7-TMD 
proteins that are assigned to the GR family of insects based 
on sequence homology. These “olfactory” GR types mediate 
the detection of carbon dioxide in various insects [44–46] 
and of certain pheromones in Drosophila melanogaster [35].

Odorant receptors (ORs)

Discovery of ORs, OR repertoires and evolution

The discovery of insect ORs has proven as a particular chal-
lenging task. The first OR-encoding genes were identified 
in rat [47] following a strategy based on the finding that 
chemosensory signal transduction in OSNs of vertebrates 
is mediated by a G protein-mediated second messenger 
cascade activated by binding of odorants to a G protein-
coupled receptor (GPCR). Since GPCRs are characterized 
by seven transmembrane domains, Buck and Axel screened 
for genes encoding 7-TMD proteins and found a large num-
ber of diverse GPCRs that were specifically expressed in the 
olfactory epithelium. Subsequently, homology-based cloning 
strategies led to the identification of gene families encod-
ing ORs in other vertebrate species, including humans [48], 
fish [49] and birds [50]. However, all attempts using verte-
brate or reported Caenorhabditis elegans olfactory receptor 
sequences [51] in homology-based approaches to identify 
insect ORs failed. A breakthrough was achieved when the 
first insect genome was sequenced. During the late 1990s, 
genomic sequences of D. melanogaster became available 
[52] and allowed strategies to search for genes encoding 
7-TMD proteins expressed in the olfactory system of the 
fly. This search led to various candidate OR genes that were 
expressed in distinct non-overlapping subsets of OSNs in 
the antennae or the maxillary palps [17, 18, 26, 53]. Finally, 
the entire OR repertoire of D. melanogaster that comprises 
60 functional OR genes encoding 62 diverse OR proteins 
was unraveled [23]. Functional analysis of candidate Dros‑
ophila ORs in heterologous expression systems (see below) 
has proven their identity as receptors for odorants and dem-
onstrated that the OR repertoire of an insect is the molecular 
basis for the detection and discrimination of a large number 
of different odorant molecules [27, 54].

When genomic sequences of the malaria mosquito 
Anopheles gambiae were deciphered, homology searches 

Fig. 2   Classes of insect olfactory receptors. a ORs are heteromers 
composed of a variable odorant-binding OR protein (ORX) and an 
ubiquitous OR co-receptor (Orco). Both proteins are 7-TMD proteins 
with the N-terminus inside and the C-terminus outside the cell. The 
ORX subunit can bind to “general” odorants (including odorants orig-
inating from food plants, oviposition sites or predators) as well as to 
pheromonal substances. b The GR family includes receptors for CO2 
or given pheromones. The functional receptor is supposed to be a het-
eromer of GRX and GRY subunits that display a structure and mem-
brane topology similar to OR proteins. c IRs are composed of ligand-
binding receptor proteins (IRX) and co-receptor proteins [IRcoY (IR8a 
and/or IR25a)]. The functional IR can be a heterotetramer composed 
of two IRX and two IRcoY subunits. Alternatively, the complex can 
contain three different IRX proteins. Both IRX and IRcoY proteins 
possess three membrane-spanning domains, a pore region (P) and an 
extracellular region representing the ligand-binding domain (LBD). 
In addition, the IRcoY proteins possess an extended amino-terminal 
domain (ATD)
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with the Drosophila sequences and application of the quasi 
periodic feature classifier (QFC) algorithm [55] identified 
79 divergent ORs in the malaria mosquito [56, 57]. Com-
parison of the OR families from D. melanogaster and A. 
gambiae revealed high sequence diversity among their 
ORs (even though both species belong to the order Dip-
tera) and specific expansions of OR subfamilies in each 
dipteran lineage [57]. Together, these findings appear to 
reflect the evolutionary adaption of the OR repertoires to the 
chemo-ecological needs of each species. Remarkably, one 
unequivocally orthologous pair of Drosophila and Anoph-
eles OR genes (AgamGPRor7 and DmelOr83b) was found 
[57]. The encoded “OR” proteins later were uncovered as a 
unique odorant receptor co-receptor, renamed as Orco [58, 
59]. Orco is characteristic for each OR-expressing OSN and 
highly conserved across insect species and orders. Besides 
Diptera, Orco homologous have been identified in various 
insect orders including Lepidoptera, Coleoptera, Hymenop-
tera, Hemiptera, Orthoptera, and Zygentoma [22, 60–64]. 
Functionally, Orco is required for membrane targeting of 
canonical ORs [58]; moreover, it appears to heteromerize 
with other ORs, forming odorant-gated ion channels (see 
below) [24, 25, 65, 66].

Over the past 15 years, rapid progress in sequencing tech-
nologies and bioinformatics tools together with a drastic 
reduction of the cost for sequencing have made it possible 
to search for OR gene families in the genomes of numerous 
insect species (for review see [40]). In addition to genomics, 
transcriptomics of insect olfactory tissues proved to be an 
applicable method for OR identification. By now, explora-
tion of genomic data and cDNA sequences (derived from 
mRNA sequencing) by approaches similar to that used in 
D. melanogaster and A. gambiae or by application of known 
OR sequences as queries in BLAST searches have identified 
thousands of candidate insect OR gene sequences. Com-
plete or partial repertoires of OR genes have been reported 
for a variety of species from many insect orders including 
Coleoptera, Diptera, Hemiptera, Hymenoptera, Lepidoptera, 
Orthoptera and Phthiraptera. Between insect species, the 
numbers of OR genes vary considerably. For example, the 
genomes of the ants Harpegnathos saltator and Camponotus 
floridanus comprise about 350 OR genes [67], whereas the 
fruit fly D. melanogaster has 62 OR genes [23, 68] and only 
10 OR genes are found in the genome of the body louse 
Pediculus humanus [69]. Comparative phylogenetic analy-
ses of the OR repertoire of insects have provided valuable 
information on the evolutionary origin of OR families and 
their expansion in insect lineages [22, 70, 71]. However, it 
is an open question whether the size of the OR gene family 
in an insect is linked to the complexity of its chemical envi-
ronment. In some species, such a linkage appears reason-
able. For instance, the honey bee (Apis melifera) comprises 
a repertoire of 163 ORs for odorant detection and lives in 

a complex world of floral, kin and pheromonal odors [72]. 
In other cases, a link seems not immediately obvious, e.g., 
this applies to the red flour beetle Tribolium castaneum that 
lives in an unnatural niche, the grain stores, and has 256 
functional OR genes of which 129 are expressed in the adult 
antenna [73, 74]. As the beetle can survive for generation 
within its food source, one might ask why the beetle needs so 
many ORs. However, it is conceivable that the existing OR 
repertoire may still reflect a situation prior to the develop-
ment of agriculture.

In contrast to IRs and GRs that appeared much earlier in 
evolution and are present in a diversity of organisms across 
the Protostomia [42, 75], ORs are restricted to insects [22, 
76]. In comprehensive analyses of basal and primarily wing-
less insects, no ORs or only Orco-related proteins were 
found in the bristletails Lepismachilis y-signata and Ther‑
mobia domestica, respectively. Based on these findings, it 
has been suggested that ORs evolved later in insect evolution 
(presumably with the development of flight) and that Orco 
already was present before the phylogenetic appearance of 
other ORs [22]. In the coming years, endeavors like the i5 K 
initiative [77] that has set out to sequence 5000 Arthropod 
genomes including hundreds of nominated hexapods will 
give access to a large variety of further insect genomes. This 
wealth of information will allow more detailed insight into 
the evolution and functional implications of insect ORs.

Expression of OR repertoires

Nowadays, genome sequencing and bioinformatics technolo-
gies allow to analyze the OR gene repertoire of an insect in 
rather short time. The number of predicted OR-encoding 
genes in the genome may help to get first insight into the 
olfactory capacity of an insect. However, one has to be aware 
that the number of ORs actually expressed in a given insect 
species may vary considerably between sexes, distinct devel-
opmental stages or different olfactory tissues (i.e., antennae 
or maxillary palps). For example, in D. melanogaster, 60 
functional OR genes are found in the genome [23] of which 
43 are expressed in adult olfactory organs (antennae, max-
illary palps) and 23 in the larval stage [78–80]. Similarly, 
from the 66 OR-encoding genes of Bombyx mori, 24 are 
expressed in larvae and 35 in adult antennae; for 25 OR 
genes, no transcripts could be verified by RT-PCR in adults 
or larval stages [81, 82].

Within an olfactory organ, distinct OR subtypes are 
expressed in different numbers of cells. On the antenna of 
adult Drosophila, the various OR subtypes are expressed 
in subsets of 2–50 cells of the altogether 1200 OSNs [17, 
26, 80]. Similarly, in the female antenna of A. gambiae, 
distinct ORs are expressed in subsets of 10–75 cells of 
the 1500–1600 OSNs [83, 84]. It is unknown whether the 
expression of a certain OR subtype in a larger number of 
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OSNs is correlated with a high relevance of the detected 
odorants for an animal. Yet, for sex pheromone detection in 
moths, such a correlation is obvious. For example, in male 
B. mori, the OR type BmOR1 binds the major component 
(bombykol) of the female-released sex pheromone and it 
is expressed in a sex-specific manner in an extremely large 
subset of OSNs on the male antenna. Likewise, the male 
antenna contains a similar high number of OSNs expressing 
the receptor BmOR3 that is activated by the second female 
sex pheromone compound (bombykal) [85–87]. Sex-specific 
expression has been observed for several other moth OR 
types. In analogy to BmOR1 and BmOR3, these receptors 
are also considered as pheromone receptors (PRs) [86–93]. 
However, this notion has to be taken with care as functional 
analyses of some male-specific ORs revealed responses to 
kairomones and plant volatiles [90, 94]. With respect to a 
sexually biased expression of insect ORs, several receptor 
types are predominantly expressed in female individuals 
[95]. Such ORs are supposed to be important for host finding 
in blood-feeding female mosquitos [56, 96, 97], for locat-
ing appropriate oviposition sites or for detection of male-
produced courtship pheromones [82, 89, 98–100].

Each OSN usually expresses one ligand-specific OR 
type [27, 79, 95]; a feature shared with vertebrate OSNs 
[101–104]. However, remarkable exceptions from this gen-
eral “one-OR/one-OSN” rule have been found. For exam-
ple, in the fly D. melanogaster, six of the 36 OSN classes 
in the antenna and maxillary palp co-express 2–3 different 
OR types [79, 105–107]. In the European corn borer moth 
Ostrinia nubilalis, certain classes of OSNs with up to five 
receptor types have been described [108] and four or six dif-
ferent ORs genes are co-expressed in two classes of OSNs in 
the antenna of the mosquito A. gambiae [83]. These exam-
ples suggest that the co-expression of multiple OR types 
in a single OSN may be more widespread among insects 
than previously thought. Functionally, the co-expression of 
several ORs apparently broadens the tuning of an OSN [30]. 
In line with this notion, the OSNs in Ostrinia nubilalis that 
co-express five ORs respond broadly to several antagonis-
tic pheromone compounds. This is thought to enable male 
moths to detect a wide range of heterospecific signals, thus 
preventing cross-attraction to pheromones of other species 
[108]. Similarly, the ligand spectra of three of the six co-
expressed A. gambiae ORs only partly overlap indicating 
broad responsiveness of these OSNs to a panel of odorants, 
including volatiles released from humans [39, 109]. This 
led to the hypothesis that co-expression of the ORs in the 
OSNs allows a sensitive detection of complex host odors and 
thus may direct the attention of female mosquitoes toward a 
relevant odor source and initiate host-seeking behavior [83].

It is largely unknown how the expression of multiple OR 
genes in the same cell is controlled. In A. gambia, the genes 
of the six co-expressed ORs are arranged as a cluster within 

the genome [83]. Similarly, the genes encoding some of the 
co-expressed Drosophila ORs are clustered [23]. Analyses 
of the RNA transcribed from clustered OR genes discov-
ered polycistronic RNA suggesting that the encoded OR pro-
teins are translated from the same primary transcript [83, 
107]. Polycistronic RNA and co-expression have also been 
reported for six clustered GR genes encoding sugar receptors 
of D. melanogaster [110, 111], indicating a common princi-
ple underlying the co-expression of several chemoreceptor 
types in olfactory and gustatory neurons. A clustered organi-
zation of OR genes varies among insect species and may be 
linked to the number of OR genes. Whereas most of the 60 
functional Drosophila OR genes are dispersed [23], many 
of the 131 OR genes of the yellow fever mosquito Aedes 
aegypti are paired in tandem arrays, triplets and large clus-
ters of up to 11 genes [97]. Worth mentioning, part of the 
160 OR genes in the honey bee Apis mellifera are arranged 
in large tandem arrays with up to 60 OR genes [72].

Methods used for functional characterization of ORs

While the identification of OR gene sequences was greatly 
facilitated during the last decades, the identification of 
ligands for the encoded proteins significantly lagged behind, 
leaving most ORs as orphan receptors. Only for a few spe-
cies, including the dipterans D. melanogaster [27, 54, 78, 
112] and A. gambiae [39, 109] as well as the moth Spodop‑
tera littoralis [71], a significant portion of the OR repertoires 
has been deorphanized. Otherwise, ORs for distinct phero-
mones as well as certain non-pheromone odorants have been 
characterized in a number of lepidopteran species, such as B. 
mori [86, 113, 114], Heliothis virescens [90, 115], Ostrinia 
nubilalis [116], Spodoptera littoralis [117] and Cydia pomo‑
nella [94, 118, 119]. For deorphanization of insect OR 
proteins, several heterologous in vitro and in vivo expres-
sion systems have been successfully established (Fig. 3); 
more precisely, cultured cell lines and Xenopus oocytes as 
in vitro expression system and the “empty neuron system” 
of Drosophila for functional in vivo analyses [95, 120, 121]. 
The expression systems significantly differ in design, time 
requirement, convenience of handling and the opportunity 
for high throughput analyses.

OR expression and characterization in cell lines is rather 
straightforward. Successful characterization of insect ORs 
has been performed using the human embryonic kidney cell 
line 293 (HEK293 cells) [24, 25, 90, 114, 122–126], mam-
malian HeLa cells [24], D. melanogaster Schneider 2 cells 
(S2 cells, derived from embryos) [20, 21] as well as cell 
lines derived from the ovaries of Spodoptera frugiperda (Sf9 
cells) [20, 127–130], Trichoplusia ni (High five cells) [131, 
132] and B. mori (Bm5 cells) [132].

For analysis of receptor function, cell lines are most 
often transfected with expression vectors driving transient 
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expressing of a distinct OR and Orco [24, 25]. The pres-
ence of Orco can significantly increase the sensitivity of the 
detection system [86]. In Sf9 cells, heterologous expression 
of Orco appears to be dispensable as this cell line expresses 
an endogenous version of the protein [20, 128]. Alterna-
tively, cell lines are stably transformed by integrating an OR 
and Orco expression cassette in the genome [65, 124, 125] 
allowing an inducible or constitutive OR expression and 
offering the possibility of high throughput ligand screening. 
However, functional characterization of moth PRs was also 
possible in stably transformed HEK293 cells lacking Orco 
but expressing the G protein subunit Gα15. This allowed cou-
pling of OR activation to an intracellular signaling cascade 
leading to a calcium signal [90, 114, 122]. Generally, func-
tional characterization of ORs in expressing cells involves 
stimulating with odorants solubilized by means of organic 
solvents (DMSO, methanol) or OBPs. The odorant-induced 
excitation of cells is analyzed by calcium imaging or patch 
clamp techniques. Using OBPs for ligand solubilization has 

revealed enhanced and more specific calcium responses of 
OR-expressing HEK cells [90], supporting the notion that 
OBPs contribute to the sensitivity and specificity of odorant 
detection.

Xenopus oocytes are convenient, robust and have been 
widely used as in vitro system for the expression and char-
acterization of insect ORs [39, 124], including PRs [86, 
133–136]. To analyze a given OR type, the respective RNA 
is micro-injected together with RNA for Orco into a frog 
egg that produces the two proteins and inserts them into the 
cell membrane. After a few days, the responsiveness of the 
oocyte to odorants can be assessed by two electrode voltage 
clamp technique in an aqueous bath solution. For stimu-
lation, the hydrophobic odorants are usually solubilized in 
DMSO and applied to the liquid medium; so far, only in few 
cases, OBPs have been used for solubilization [134, 137]. 
In studies applying odorant/OBP solutions for OR stimula-
tion, distinct binding proteins enhanced the sensitivity of 
OR-expressing oocytes and improved the specificity of the 

Fig. 3   Expression systems and methods used for the functional char-
acterization of ORs. Schematic representation of in vitro approaches 
(mammalian or insect cell lines as well as  Xenopus oocytes) and 

in vivo experiments (Drosophila “empty neuron system”) to charac-
terize heterologously expressed insect ORs. The advantages and dis-
advantages of each method are given
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response to given pheromonal components. In the Xenopus 
egg-based approach, each oocyte has to be injected prior to 
analysis and the odorant responsiveness of only one injected 
oocyte at a time can be analyzed, hindering high throughput 
assessment of large arrays of ORs and odorants. To over-
come these problems, sophisticated semi- or fully-automated 
systems for oocyte injection have been developed [138–140]. 
Application of these advanced technologies will facilitate 
the deorphanization of ORs and thus contribute to the func-
tional characterization of insect OR repertoires [141, 142].

In comparison to cell lines and frog oocytes, the charac-
terization of ORs using Drosophila as in vivo expression 
system is more time-consuming and sophisticated; trans-
genic flies have to be generated and analysis of ORs is done 
through monitoring the response of OR-expressing OSNs 
by single sensillum recordings [143]. Thus, using the fly 
expression system may not be considered as first choice 
for OR analysis, in particular when planning high through-
put OR deorphanization. However, large repertoire studies 
have been performed for Drosophila ORs, Anopheles ORs 
and most recently for ORs of Spodoptera littoralis [27, 71, 
109]. In summary, in vitro approaches are considered more 
practical in functional screenings of large numbers of ORs, 
while the in vivo transgenic Drosophila system is generally 
more accurate [120]. In this regard, for certain insect ORs, 
heterologous expression in OSNs of Drosophila could be a 
key to success as the insect in vivo system may provide the 
appropriate physiological environment and correct upstream 
processing machinery needed for proper OR reactivity. For 
heterologous expression of ORs, two different olfactory sen-
silla types of D. melanogaster (sensilla basiconica and sen-
silla trichodea) providing different environments have been 
established. The elegant and most often used Drosophila 
“empty neuron” expression system is based on a mutant fly 
in which the endogenous receptor genes of one of the OSN 
classes in a sensillum basiconicum on the antenna (ab3A) 
are deleted [95]. Expression of a candidate OR in the “empty 
neuron” is achieved via the well established GAL4/UAS-
system employing the promoter of the endogenous receptor 
gene (Or22a) to drive expression of Gal4 and subsequently 
of the UAS-controlled OR gene of interest. The reliabil-
ity of combining the Drosophila “empty neuron” system 
with single sensillum recordings to determine the response 
properties of candidate ORs has been validated not only for 
receptors from D. melanogaster [27, 54, 78, 95] but also for 
ORs of the mosquito A. gambiae [109, 144] and moths [71].

The notion that the sensillum basiconica-based “empty 
neuron” system may not be suitable for ORs endogenously 
expressed in trichoid sensilla, such as certain lepidopteran 
and Drosophila PRs, motivated the development of the 
Drosophila T1 trichoid sensillum-based expression system 
[145]. The T1 sensillum endogenously contains a neuron 
that detects the pheromone cis-vaccenyl acetate via the 

receptor OR67d [145], thus providing an OSN environment 
tuned to pheromone detection. This includes expression of 
SNMP1 that is supposed to be required for the appropriate 
functioning of insect PRs [36, 146] and maybe for some 
other ORs, such as the Drosophila farnesol receptor Or83c 
[147]. The T1-system was shown convenient for the expres-
sion of moth PRs [117, 145] and recently for characteriza-
tion of a broadly tuned OR from Locusta migratoria [148]. 
Similar to the sensillum basiconica-based “empty neuron” 
system, a Gal4/UAS-based procedure is used to replace the 
endogenous Or67d receptor by the OR of interest and recep-
tor analysis is performed by single sensillum recordings.

In conclusion, oocyte-, cell culture- and Drosophila-
based expression systems have been proven valuable tools 
for determining the ligand specificities of ORs. However, 
given the modern possibilities to rapidly determine the 
OR gene repertoires of insect species and the often very 
high numbers of ORs expressed, for the future, the devel-
opment of fast, easy and convenient functional expression 
systems for receptor deorphanization will be a challenge. 
Most recently, application of novel techniques for genome 
editing (such as CRISPR/Cas9 and TALENs) as well as 
RNAi experiments have provided promising approaches 
to characterize Orco and other ORs [85, 149–158]. Future 
developments of these methods may provide a platform for 
deorphanization of large OR repertoires within short time, 
thus elucidating their functional relevance for the insect 
olfactory system.

Ligand specificities of ORs

As mentioned above, for some insect species, the ligand spe-
cificities of a larger OR repertoire have been explored using 
the Drosophila “empty neuron system” and Xenopus oocytes 
[71, 109, 159]. As result of these pioneering studies, a pic-
ture emerges indicating a wide range of OR specificities. 
Although some ORs appeared to be narrowly tuned, most 
ORs were activated by multiple ligands, i.e., they are broadly 
tuned. In addition, most ligands activated several receptor 
types. Together, the results suggest that combinatorial cod-
ing is the primary coding principle in the insect olfactory 
system. While the available data supported the view that 
some ORs are narrowly and others are broadly tuned, sev-
eral experimental factors may affect the assessment of the 
tuning width of receptors (for review see [30]). A critical 
parameter is the number and selection of odorants tested 
in the functional assay and how this panel covers the range 
of chemicals recognized by the receptor. If the test panel is 
small and contains a given ligand but few or no chemically 
related compounds, the OR may appear to be very narrowly 
tuned. Accordingly, if the test panel is large and comprises 
a large number of substances related to a primary ligand, 
the receptor may appear more broadly tuned. Likewise, the 
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applied stimulus concentration is critical when assessing the 
response specificities of ORs. Since in functional studies 
odorant dilutions of 1:100 up to 1:10,000 are typically used, 
the question arises how these stimulus concentrations reflect 
the natural odor concentrations an insect encounters. Thus, 
one has to keep in mind that at least for some of the ORs, a 
classification as “broadly tuned” based on functional analy-
sis in heterologous systems could be the misleading result 
of experimentally applied unnatural odorant concentrations.

Within the OR repertoire of an insect, a subset of nar-
rowly tuned OR types is dedicated to the detection of phero-
mone components. First PRs were identified in two lepidop-
teran species, the tobacco budworm H. virescens [88, 90] 
and the silkmoth B. mori [86, 87, 113]. In these moths, the 
females release a blend of sex pheromone components for 
mate attraction that are detected by specialized pheromone-
responsive OSNs on the male antenna [160–162]. Conse-
quently, in search of PRs, antennal cDNA libraries and avail-
able genome sequences were screened for OR genes that 
were specifically expressed in OSNs of males. Using differ-
ential and homology-based screening methods in combina-
tion with bioinformatics approaches, in each species a small 
group of related genes was identified that were preferentially 
expressed in male antennae. Functional analysis of Heliothis 
candidate PRs in heterologous systems proved the receptor 
types HR13 (HvirOR13) and HR6 (HvirOR6) as receptors 
for the major (Z11-hexadecenal) and a minor (Z9-tetrade-
cenal) sex pheromone component, respectively [90, 115]. 
Similarly, BmorOR1 and BmorOR3 were demonstrated 
as receptors for bombykol (E10, Z12-hexadecadienol) and 
bombykal (E10, Z12-hexadecadienal), the major and minor 
constituents of the B. mori sex pheromone [86, 113, 114]. 
Sequence comparison of PRs from H. virescens and B. mori 
uncovered a striking similarity between PR proteins [87]. 
This observation allowed homology-based strategies to 
identify candidate PRs of several lepidopteran species [89, 
163–165]. High sequence similarity between PRs appears to 
be characteristic for Lepidoptera. In all moth and butterfly 
species analyzed so far, PRs were found to be highly related 
across insect species and form a separate and rather con-
served group [70, 82, 88, 100, 165–168]. This remarkable 
conservation of the PRs indicates a high negative evolution-
ary selection pressure on the lepidopteran PR proteins. It 
also may reflect the chemical similarity of their pheromone 
ligands that are often long-chain unsaturated acetates, alco-
hols, aldehydes and polyenic hydrocarbons [169].

Beyond many lepidopteran species, ORs that are tuned 
to pheromone components have been identified only in few 
species from other insect orders. In the honey bee (Hyme-
noptera), the receptor type Or11 was reported as recep-
tor for the queen pheromone substance 9-oxo-2-decenoic 
acid [170]. In D. melanogaster (Diptera), cis-vaccenyl 
acetate (cVA) that is produced by male flies and acts as 

anti-aphrodisiac pheromone and in aggression behavior 
[171–173] is recognized by both sexes through two recep-
tors, Or67d and Or65a [145, 172, 174, 175]; yet, recent 
results indicate that Or65abc-expressing neurons are unre-
sponsive to cVA [176]. Another Drosophila pheromone, 
9-tricosene, that is deposited by males upon stimulation 
by food odors and acts as aggregation pheromone and ovi-
position guidance cue for females is detected via Or7a 
[177]. In addition, Drosophila Or88a and Or47b have been 
reported as receptors for fatty acid methyl esters mediat-
ing copulation and attraction [178]. However, their roles 
as PRs have been called into question since activation of 
Or88a and Or47b neurons were found to have little direct 
impact on courtship behaviors and both OSN classes are 
sensitive to a diverse array of fly and non-fly odors [176]. 
Most recently, PRs for components of the aggregation 
pheromone used by the common bed bug, Cimex lectular‑
ius (Hemiptera), were described. Interestingly, in this spe-
cies, distinct components of the aggregation pheromone 
activate multiple ORs with various tuning properties [136] 
indicating a coding principle different from the one used 
for moth sex pheromones where distinct narrowly tuned 
PRs are employed for the detection of the components of 
the blend.

With respect to assigning specific functions to OR 
types based on ligand spectra determined in heterologous 
expression systems, a further point should be considered: 
analyses of OR function are generally conducted in the 
absence of OBPs that are present in the sensillum lymph 
surrounding the dendrite of OR-expressing neurons under 
natural conditions. Although the functional relevance of 
OBPs is not entirely clear [179], within a sensillum, dis-
tinct subsets of OBPs are supposed to mediate the trans-
port of ligands through the sensillum lymph towards the 
respective ORs of the OSNs [8, 180, 181]. Competitive 
binding studies on various OBPs from moth and mosquito 
[182, 183] as well as RNA interference assays dissecting 
the function of 17 Drosophila OBPs [184] have demon-
strated that different OBP types are tuned to defined, partly 
overlapping sets of ligands. Moreover, functional studies 
employing pheromone-binding proteins (PBPs) instead of 
DMSO to solubilize pheromonal ligands indicate that the 
response of receptor-expressing Xenopus oocytes or HEK 
cells is more specific [90, 122, 134, 137]. Hence, current 
data indicate that OBPs (including PBPs) as well as ORs 
contribute to the specificity of an odorant detection sys-
tem and suggest that under natural conditions OBPs may 
operate as a pre-filter enabling only given compounds to 
reach the ORs. In light of these findings, the ligand spectra 
determined for ORs in heterologous systems in the absence 
of OBPs may include odorants that the respective ORs in 
the membrane of OSNs in olfactory sensilla would never 
encounter.
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OR membrane topology and formation of heteromeric 
complexes with Orco

While insect and vertebrate ORs share 7-TMDs, no sequence 
similarities and evolutionary relationship between insect 
ORs and known GPCRs exist [19, 185]. Furthermore, 
detailed analyses revealed an inverse membrane topology 
of insect ORs compared to vertebrate ORs with intracel-
lular N-termini and extracellular C-termini [19–21, 132, 
186, 187]. These findings challenged the concept that insect 
ORs belong to the superfamily of GPCR proteins and initi-
ate G protein-mediated signaling processes in OSNs. Sub-
stantial progress in better understanding the structure and 
functionality of insect olfactory receptors has been made by 
the observation that the OR repertoire comprises an unusual 
member (initially designated as OR83b in Drosophila or R2 
in moths) named odorant receptor co-receptor (Orco) [59]). 
Orco shares only low sequence identity with other insect 
ORs, but is highly conserved across insects species of the 
same or different orders (up to ~ 95% sequence identity) 
[57, 60–62, 188]. In contrast to canonical ORs, Orco is not 
expressed in a distinct subset of OSNs but in most if not in 
all OR-expressing OSNs [26, 58, 60–62, 86]. However, Orco 
is absent from OSNs expressing other types of chemosen-
sory receptor proteins, i.e., IRs and GRs (see below) [58, 
117]. Consequently, Orco is considered as a marker for OR-
expressing OSNs in insects and these OSNs usually express 
one or few distinct OR types (designated as canonical or 
classical ORs) along with Orco [27, 79, 86, 95].

Alike canonical ORs, Orco reveals an inverted mem-
brane topology compared to GPCRs with an intracellular 
N-terminus and an extracellular C-terminus [19, 21, 189]. 
More importantly, ORs and Orco appear to physically inter-
act via intracellular domains and form heteromers of yet 
unknown stoichiometry [19, 66, 190]. This finding has led 
to the notion that Orco serves as a ubiquitous co-receptor 
for ORs and that a functional receptor generally comprises 
a canonical OR type associated with Orco. In OR/Orco het-
eromers, the canonical OR type binds odorants and deter-
mines the ligand specificity while Orco is apparently not 
involved in ligand binding [24, 25, 65, 66, 86, 125, 141, 191, 
192]. Yet, responses to a broad range of odorants are mark-
edly impaired in Orco-deficient flies as well as in flies with 
reduced Orco expression due to RNA interference [58, 66]. 
Olfactory deficits in Orco-deficient flies can be rescued by 
the expression of Orco orthologues from other insect species 
(moths or mosquitoes), suggesting a substantial functional 
conservation and relevance of Orco [61]. In fact, Orco is 
of considerable importance for OR trafficking to dendritic 
membranes of OSNs [19, 58]. Consistent with its role in 
membrane targeting of ORs, OR-mediated odorant-induced 
responses in heterologous systems were markedly enhanced 
upon co-expression of Orco [20, 86]. The Orco-dependent 

trafficking of ORs to OSN dendrites seems to be modulated 
by calmodulin (CaM) [193] since binding of CaM to the 
respective binding site of Orco contributes to the sensitiza-
tion of insect OSNs upon repeated or extended stimulation 
with odorants [193–195].

OR/Orco complexes operate as ligand‑gated ion channels: 
implications for OR‑mediated signaling

Analyses of Orco in heterologous expression systems have 
disclosed that in the absence of ORs, Orco can form a non-
specific, spontaneously opening cation channel permeable 
for Ca2+ (and to a lower extent also for Na+ and K+) [25, 
125, 196]. Consistently, the spontaneous electrical activity 
of OSNs was attenuated in Orco-deficient flies [36, 58, 197]. 
These findings have led to speculations that Orco provides a 
dominant leak or pacemaker current triggering spontaneous 
activity (reviewed by [198]). This notion is supported by the 
observation that the Orco-specific agonist VUAA1 increases 
the spontaneous (odorant-independent) spike frequency of 
OSNs [125, 196]. However, the spontaneous activity pat-
terns of OSNs were also found to be dependent on the co-
expressed canonical OR type [27, 95], suggesting that both 
Orco and the associated OR(s) determine the spontaneous 
firing rate of an OSN.

In view of the finding that Orco can form an ion channel 
and a heteromeric complex with the ligand-binding canoni-
cal OR types, various cell lines and Xenopus oocytes were 
employed to co-express Orco and canonical OR types to 
decipher chemosensory transduction mechanisms. In these 
studies, short odorant pulses elicited a very fast and tran-
sient electrical response of the cells, indicating that the het-
eromeric OR/Orco complexes operate as odorant-activated 
ionotropic receptors, i.e., as ligand-gated ion channels [20, 
24, 25]. Subsequent studies revealed that in OR/Orco com-
plexes, the ligand-binding OR subunit and Orco contribute 
to the permeability of the ion channel, suggesting that both 
proteins participate in the formation of the ion pore [12, 24, 
192]. Since neither the sequences of Orco nor of any of the 
ligand-binding OR types display homology to known pore 
domains in other ion channels, insect OR/Orco complexes 
appear to be endowed with a novel structural domain for ion 
permeability and selectivity [12, 199].

Odorant‑induced transduction processes in OSNs: 
ionotropic versus G protein‑mediated signaling

Although considerable evidence has been accumulated that 
OR/Orco complexes function as ionotropic receptors, the 
mechanisms underlying signal transduction in insect OSNs 
are still a matter of controversial discussion. The concept 
that signal transduction via OR/Orco complexes is exclu-
sively ionotropic (Fig. 4a) was supported by experiments 
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Fig. 4   Olfactory signal transduction in insects. a For receiving “gen-
eral” odorants (e.g., food odors), OBPs transfer odorants to a specific 
OR (ORX) that forms a ligand-activated receptor/ion channel complex 
with the OR co-receptor (Orco). Binding of an odorant to the ORX 
subunit elicits opening of the non-selective cation channel and acti-
vates an ionotropic current. In parallel, the variable ORX subunit acti-
vates a G protein (Gαs), leading to increased production of the sec-
ond messenger cAMP via enhancing the activity of adenylyl cyclase 
(AC). The secondary messenger substance opens the heteromeric 
ORX/Orco channel or may activate homomeric Orco channels (not 
shown). The activity of Orco is also regulated by calmodulin (CaM) 
or phosphorylation through protein kinase C (PKC). b In pheromone-
responsive OSNs, SNMP1 acts as co-receptor. SNMP1 is supposed to 

dock ligand-loaded PBPs near a given PR (PRX) and/or is involved in 
the release of the pheromone to the PR. The PRX/Orco channel com-
plex opens following binding of the pheromone to the PRX subunit 
leading to an influx of cations into the cell. Alternatively or in paral-
lel, pheromone binding to the PRX may activate a G protein-mediated 
(Gαq) pathway in pheromone-sensitive cells. Pheromone-induced 
activation of Gq protein leads to an increased activity of phospho-
lipase C (PLCβ) that converts phosphoinositol-(4,5)-biphosphate 
(PIP2) into inositol trisphosphate (IP3) and diacylglycerol (DAG). The 
increase in IP3 opens a calcium-selective ion channel (CaC) in the 
plasma membrane. The rise of Ca2+ in turn opens Ca2+-activated cat-
ion channels (CC). Increase in Ca2+ and DAG stimulates PKC activ-
ity, leading to activation of cation channels
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with OR/Orco-expressing cell lines in which inhibitors of 
G proteins (such as the guanosine diphosphate analogue 
GDP-β S) failed to block odorant-induced responses [20, 
24]. Furthermore, in single sensillum recordings from Dros‑
ophila mutants deficient of G protein alpha subunits, no 
change in odor sensitivity was observed, indicating that G 
proteins are not required to elicit odorant-evoked responses 
[200]. In marked contrast to these observations, a number 
of studies reported that odorant-induced responses in insects 
were substantially affected by appropriate inhibitors or acti-
vators of G protein signaling cascades. Consistently, it was 
found that various elements of G protein-mediated trans-
duction pathways (including G proteins) are expressed in 
OSNs of insect antennae [201–209]. In addition, in OSNs 
as well as in HEK cells expressing ORs or OR/Orco, odor-
ants induced the formation of the second messenger cyclic 
adenosine monophosphate (cAMP) and an activation of 
cAMP-gated channels. These responses were dependent on 
the G protein subunit Gαs or were significantly enhanced 
by Gαs [25, 197, 210]. Noteworthy, odorants also evoked 
G protein-mediated responses in HEK cells that expressed 
only ligand-binding ORs but lacked Orco suggesting that 
the ligand-binding ORs are sufficient to activate G proteins 
[87, 90, 122]. Therefore, although insect ORs are structur-
ally distinct from typical GPCRs, they seem to be capable 
of operating as GPCRs [25, 197].

In insect OSNs, enhanced cAMP synthesis was found to 
cause increased spike rates [197]. Although the reason is 
unclear, it is interesting to note that Wicher and co-workers 
[25] observed that in heterologous systems, elevated cAMP 
concentrations led to an activation of Orco and OR/Orco 
complexes. The cAMP-evoked activation of Orco was not 
dependent on protein kinase A (PKA) [25] but seemed to 
rely on protein kinase C (PKC) and phospholipase C (PLC) 
signaling. Inhibition of PKC or PLC caused a reduced sen-
sitivity of Orco to cAMP while stimulation of PKC led to 
an activation of Orco even in the absence of cAMP. Consist-
ently, elimination of PKC phosphorylation sites in the Orco 
protein largely reduced its sensitivity to cAMP. Compatible 
with these observations, agents and mutations affecting PLC 
and/or PKC alter odorant-evoked responses of OSNs [211, 
212]. Collectively, these findings suggest that both a Gαs/
cAMP pathway as well as a PLC/PKC pathway are involved 
in the olfactory signaling process and support the concept 
that activation of ORs by odorants initiates metabotropic 
reaction cascades (reviewed by [198, 213]).

At this point, it appears that insect ORs can play differ-
ent and complex functional roles. This includes: (1) the 
OR/Orco complex can operate as odorant-activated iono-
tropic channel. (2) In the OR/Orco complex, the ligand-
binding ORs can function as non-classical GPCRs activat-
ing G proteins leading to an increased cAMP concentration 
and/or enhanced PKC activity. (3) Orco can serve as a 

cAMP-activated channel whose activity is regulated by PLC/
PKC signaling.

At the moment, it is difficult to reconcile the findings that 
either favor ionotropic or metabotropic signaling. However, 
it is conceivable that both aspects are relevant for insect 
OSNs as initially suggested by Wicher and co-workers [25] 
who noted that in a heterologous system the odorant-induced 
responses were composed of a rapid ionotropic and a slower 
but more sensitive metabotropic component; the latter was 
based on G protein signaling. Consequently, a model for 
a dual activation of OR signaling has been proposed [25, 
213]. According to this model, an odorant-induced activa-
tion of ORs results in a fast ionotropic response followed 
by a slower but more sensitive metabotropic reaction that 
leads to a regulation of the cation channel formed by OR/
Orco complexes (Fig. 4a). Thus, the ionotropic mechanism 
provides a direct and rapid response while the metabotropic 
signaling process might boost low signals due to signal 
amplification. Such interplay of the two mechanisms would 
allow signal detection over a broad range of odorant con-
centrations [214]. The ability to detect odors rapidly and 
with high sensitivity might be particularly important for fly-
ing insects since both speed and sensitivity are presumably 
crucial for tracking turbulent odor plumes encountered by 
insects during flight. Therefore, the complex ionotropic and 
metabotropic OR-mediated signaling mechanisms in insect 
OSNs might represent special adaptations to the evolution 
of ORs and flight in insects. This notion is in line with the 
finding that primitive and primarily wingless insects lack 
ORs or have only Orco-related genes [22]. By contrast, the 
other large group of insect olfactory receptors, the IRs, is not 
only found in insects but exists throughout the protostomes 
[22, 75]. Moreover, signaling through IRs is supposed to be 
solely ionotropic (as discussed below) and neurons express-
ing IRs are less sensitive [214, 215].

Pheromone signaling in moths: independent of Orco?

A high sensitivity of OSNs is supposed to be particularly 
important for the detection of pheromonal compounds in 
moth species since the males are capable of locating sex 
pheromone-releasing female conspecifics over long dis-
tances [216, 217]. According to the observation that Orco 
is co-expressed with PRs in OSNs of sex pheromone-respon-
sive trichoid sensilla of D. melanogaster [174] and male 
moths [86, 89, 133], it has been proposed that the trans-
duction of pheromone signals in insects is also generally 
based on a heteromeric complex of a ligand-binding PR and 
Orco. However, recent studies on the hawkmoth Manduca 
sexta found no evidence for a PR/Orco-based ionotropic 
pheromone transduction and negated a role of Orco in the 
primary transduction events [196, 218]. Instead, an alter-
native role of Orco in moth pheromone-responsive OSNs 
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was suggested. In tip recordings from intact sensilla, acti-
vation of Orco by the agonistic substance VUAA1 elicited 
an increased spontaneous activity that was reduced by the 
Orco antagonist OLC15. In addition, Orco from M. sexta 
expressed in a heterologous system formed a spontaneously 
active cation channel. Based on these findings, it has been 
proposed that in moth pheromone-sensitive OSNs, Orco 
serves as a voltage-gated and apparently second messenger-
gated pacemaker channel, controlling the membrane poten-
tial and thus the threshold and kinetics of the pheromone 
responses. These findings in M. sexta also fueled the concept 
that in moth sex pheromone signaling, the transduction via 
receptors may be exclusively metabotropic [196, 198, 218]. 
In this regard, it is noteworthy that early studies have shown 
that pheromone stimulation of antennal tissues elicited the 
formation of the second messenger inositol 1,4,5-trisphos-
phate (IP3) [219–221]. These observations were extended by 
studies reporting at least three electrical currents in cultured 
moth OSNs upon exposure to pheromones. A first and very 
rapid Ca2+ current that declines within several milliseconds. 
A second and slower current that is dependent on extracellu-
lar Ca2+ and declines within less than 3 s. And finally, a third 
and sustained inward current that lasts over several seconds 
and is Ca2+-independent. Interestingly, perfusion of cultured 
moth OSNs with IP3 elicits a similar sequence of inward 
currents that strongly resemble pheromone-evoked currents 
[222–224]. Although the molecular elements underlying 
the pheromone-evoked currents are still largely unclear, the 
similarities between the pheromone- and IP3-induced cur-
rents in OSNs indicate that pheromones activate a metabo-
tropic signaling pathway mediated by PLC type β, leading 
to an enhanced formation of IP3 and diacylglycerol (DAG) 
via hydrolysis of the membrane lipid phosphatidyl inositol-
bisphosphate (PIP2). Consequently, activation of IP3-gated 
Ca2+ channels in the membrane of OSNs leads to a rise in 
Ca2+ that rapidly opens Ca2+-activated cation channels. In 
addition, the diacylglycerol might enhance PKC activity, 
thus eliciting the third pheromone-evoked inward current 
that is supposed to rely on a PKC-activated cation channel 
[198, 217] (Fig. 4b).

It is a matter of debate whether a metabotropic phero-
mone transduction process that includes a series of enzyme-
catalyzed reactions is fast enough for the required physiolog-
ical responses. Depending on their flapping frequency, flying 
insects sample odorants/pheromones approximately every 
30 ms [225–227]; reviewed by [198]. In this context, it is 
interesting to note that the process of insect phototransduc-
tion is based on a PLC-mediated cascade and photorecep-
tors nevertheless have a high temporal resolution following 
light stimuli with up to 300 Hz [228, 229]. The high speed 
of phototransduction is supposed to rely on the clustering of 
the relevant signaling elements in multiprotein complexes 
called transducisomes or signalosomes (reviewed by [230]). 

Although it is unknown whether signaling proteins in the 
dendritic processes of insect OSNs are arranged in multipro-
tein complexes, the example of phototransduction indicates 
that a G protein-mediated reaction cascade could be indeed 
fast enough for a rapid response to pheromone signals.

Perireceptor events in olfactory signaling: relevance 
of OBPs and SNMP1

To reach the receptor proteins in the dendritic membranes 
of insect OSNs and to trigger signal transduction processes, 
odorants first have to overcome the aqueous sensillum 
lymph. A wealth of studies support the notion that small 
(13–17 kDa) and water-soluble odorant-binding proteins 
(OBPs) solubilize the often hydrophobic odorant molecules 
in the lymph after they have entered the sensillum through 
cuticular pores and mediate their transfer to ORs [8, 9, 180, 
231–234] (Fig. 4a). The number of different OBPs consider-
ably varies between insect species. Some species possess up 
to several dozens of OBP-encoding genes many of which are 
expressed in the antenna [234–237]. This diversity of OBPs 
supports the view that OBPs are not just simple general solu-
bilizers and transporters for odorants but in addition make a 
decisive contribution to odorant recognition and may inter-
act with distinct ORs [8, 180, 184]. Yet, some OBP types 
are apparently not required for odorant transport but seem 
to play a role in buffering changes in the odor environment 
[179]. Consistent with the role of OBPs as odorant trans-
porters and interaction partners of ORs, ligand specificity 
and an interplay with distinct receptor types has been docu-
mented for the so-called pheromone-binding proteins (PBPs) 
[90, 114, 122] that comprise a subfamily of OBPs binding 
and transporting pheromone molecules to PRs (Fig. 4b). In 
contrast to the ligand specificity observed for some PBPs, 
distinct OBP types in a given species can have overlapping 
and rather broad ligand spectra [184, 238]. Thus, a single 
OBP may be involved in the detection of several compounds 
while different OBPs may contribute to the recognition of a 
given odorant, a scenario corroborated by results of a com-
prehensive analysis of 17 Drosophila OBPs [184].

Although OBPs are generally supposed to serve as pas-
sive carrier proteins transporting odorants through the lymph 
to appropriate ORs [239–241], some studies suggest that 
OR activation may depend on the OBP/ligand complex 
[242–244]. For pheromone detection in Drosophila, it has 
been reported that the ligand for activation of the receptor 
OR67d is not the free pheromone cis-vaccenyl acetate (cVA) 
but a PBP called LUSH [245] that is ‘‘conformationally acti-
vated’’ upon binding of cVA [242, 246]. However, this mode 
of OR activation was called into question by a recent study 
demonstrating that OR67d can be activated directly by cVA 
in the absence of LUSH [247].
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For sensitive pheromone signaling in insects, besides 
PBPs and PRs, the “sensory neuron membrane protein 1” 
(SNMP1), seems to be required [36, 146, 248] (Fig. 4b). 
SNMP1 comprises two transmembrane domains and shares 
this structural feature and some sequence identity with 
the mammalian CD36 scavenger receptor family [249, 
250]. Interestingly, recent studies found that CD36 is also 
expressed in subpopulations of murine OSNs and may be 
involved in odorant detection in mammals [251–253]. In 
insects, SNMP1 is co-expressed with PRs in pheromone-
responsive OSNs [36, 254–258] and located in close proxim-
ity to the receptor in the membrane [36, 131]. PR-express-
ing OSNs require SNMP1 for proper function [36] and the 
protein appears to contribute to the remarkable sensitivity 
of pheromone detection. Moreover, it is required for rapid 
activation and termination of pheromone-induced activity 
[248, 255]. Since its discovery, SNMP1 has been proposed 
to function as a co-receptor that may help to unload the 
pheromone from the binding protein or to pass the signal 
molecules to the PR [9, 249, 259]. Although the precise 
functional relevance of SNMP1 for pheromone signaling is 
still unclear, a most recent study provided first evidence that 
SNMP1 indeed might funnel hydrophobic pheromones from 
the extracellular fluid to PRs in the cell membrane [37].

In addition to SNMP1, a second SNMP has been reported. 
Similar to SNMP1, the “sensory neuron membrane protein 
2” (SNMP2) belongs to the CD36 family [260], is abun-
dant in pheromone-sensitive sensilla of moth and is also 
expressed in other chemosensory organs, including the pro-
boscis and the maxillary palps [261]. In the antenna, SNMP1 
is specifically localized in the dendritic membrane of anten-
nal OSNs [249, 262] whereas SNMP2 is expressed in sup-
porting cells of sensilla [254, 257], suggesting a differential 
function of these two proteins. While SNMP1 is supposed 
to play a role in pheromone detection, SNMP2 has been 
proposed to be involved in the clearance of the sensillum 
lymph [254].

Gustatory receptors (GRs) as receptors for CO2 
and pheromones

In insects, gustatory cues are detected via specialized sen-
sory neurons residing in taste sensilla on the mouthparts, 
tarsi, wings and ovipositors [263]. For the detection of 
sweet and bitter tasting substances, gustatory neurons are 
equipped with GRs [264]. In D. melanogaster, the GR fam-
ily comprises 68 members; at least four GRs were found 
to be expressed in given OSNs of the antenna [265, 266], 
including GR types GR21a and GR63a that are required for 
responsiveness to CO2 [44, 267]. While CO2 is a stress sig-
nal in flies, it is also used to find fermenting food [268–270]. 
Moreover, blood-feeding female mosquitoes locate hosts 
via plumes of exhaled CO2. Accordingly, orthologues of 

Drosophila CO2 receptors have been identified in mosquito 
OSNs from capitate peg sensilla on the maxillary palps; 
these receptors were named Gr1, Gr2 and Gr3 in Aedes 
aegypti or Gr22, Gr23 and Gr24 in A. gambiae, respectively 
[45, 46]. Somewhat surprisingly, recent analyses revealed 
that mosquito CO2 receptors also respond to an array of 
odorants from human skin, indicating that the relevant OSNs 
on the maxillary palps can react to both CO2 and skin odors, 
thus informing the mosquitoes about the proximity of human 
hosts [271, 272]. Beyond flies and mosquitoes, carbon diox-
ide receptor-encoding genes have been reported for a number 
of other insects including moth and beetle species [273–275] 
in which CO2 is an important volatile cue attracting adults 
or larvae to appropriate food sources.

In addition to a role of GR types in sensing CO2, studies 
using Drosophila flies indicate that some GRs are involved 
in pheromone detection and are required for sexual behaviors 
[35, 276]. For example, Gr39a is supposed to be involved 
in the reception of a female pheromone. Knockdown of this 
receptor type led to reduced courtship behavior in males 
[277]. Similarly, the detection of courtship-inhibiting cutic-
ular hydrocarbons present on the cuticle surface of both 
males and females is mediated by Gr32a [278], probably 
together with Gr33a [279]. Moreover, the receptor type 
Gr68a in males seems to be activated by female phero-
mones [280]. Gr68a may also be activated by male-produced 
compounds inhibiting the courtship behavior of males and 
serve as receptor for an anti-aphrodisiac agent [175, 281, 
282]. Importantly, although such GR types are involved in 
the detection of pheromones that are usually considered as 
olfactory signals, they are expressed in gustatory cells of the 
labellum and the legs/tarsi [278–280, 283].

The membrane topology of insect GRs is unclear. A 
recent study using two different GR types from B. mori has 
provided first evidence that insect GRs—similar to insect 
ORs—have an inverted topology relative to GPCRs, i.e., 
they are endowed with an intracellular N-terminus, an 
extracellular C-terminus and an odd number of transmem-
brane spans [284] (Fig. 2). Also the molecular mechanisms 
underlying the GR-mediated transduction of chemical cues 
(including CO2 and pheromones) in chemosensory neurons 
are largely elusive [276]. Studies on GR-mediated responses 
to sugars in Drosophila gustatory neurons revealed a require-
ment for G protein signaling [285]. By contrast, analyses of 
the B. mori receptor Gr-9 in Xenopus oocytes provided evi-
dence that BmGr-9 is a ligand-gated ion channel activated 
by fructose [286]. Thus, distinct GR proteins may signal 
through different (metabotropic or ionotropic) mechanisms.

Ionotropic receptors (IRs)

Besides ORs and GRs, a third class of chemosensory 
receptors in the olfactory system of insects was recently 
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discovered, the ionotropic receptors (IRs) [41]. While the 
expression of ORs and olfactory GRs seems to be restricted 
(with few exceptions) to sensilla trichodea and sensilla basi-
conica, electrophysiological recordings have demonstrated 
that also OSNs in antennal sensilla coeloconica respond 
to chemical stimuli, primarily to organic acids and amines 
[287]. In search for the receptor types rendering these cells 
responsive to chemical compounds, a number of genes 
expressed in the antennae of D. melanogaster that encode 
proteins related to ionotropic glutamate receptors (iGluRs) 
were identified and annotated as ionotropic receptors (IRs) 
[41, 288]. Subsequently, IR expression in the antenna has 
been reported for numerous insect species, such as Droso-
philids, mosquitoes and locusts [75, 289, 290].

According to predictions based on amino acid sequences, 
IRs and iGluRs share similar molecular structures including 
an extracellular N-terminus, a cytoplasmic C-terminus as 
well as a bipartite ligand-binding domain and an ion channel 
domain [291]. The stretch of amino acids forming the ion 
channel domain is the most conserved region between IRs 
and iGluRs, indicating that IRs function as ion channels. By 
contrast, the predicted ligand-binding sites are more vari-
able among the IRs and substantially differ from those of 
the iGluRs. These observations have led to the notion that 
glutamate is unlikely to be the cognate ligand for the IRs and 
opened the door for the concept that the diverse IR subtypes 
may be activated by a variety of different chemicals [41].

Comparative genomic analyses of the IR repertoire across 
various animal groups revealed that contrary to the insect-
specific ORs, IRs are found throughout the protostomes, 
including nematodes, arthropods, molluscs and annelids. 
Yet, in contrast to the related iGluRs, they are absent from 
Deuterostomia. It has, therefore, been proposed that IRs may 
have evolved from iGluRs in ancient protostomes [22, 75].

The IR repertoire of an insect has been analyzed best in 
D. melanogaster in which the IR-encoding gene family com-
prises 66 members [75]. Overall, the amino acid sequence 
identity between Drosophila IRs ranges from 10–70%, 
suggesting functional diversity [41]. Based on amino acid 
sequences and divergent expression patterns, the IR family 
can be divided in three subgroups. The first subgroup encom-
passes 16 IR types; most of them are specifically expressed 
in the antenna (and in few cases also in the proboscis) but are 
absent from other tissues. Consequently, these IR types have 
been termed “antennal IRs” or “olfactory IRs” [41, 42, 75]. 
Contrary to ORs, where only Orco is substantially conserved 
between different species, for many Drosophila “antennal 
IRs”, clear orthologues exist in numerous insects [2, 22, 72, 
75]. Since these orthologues are also expressed in antennae, 
the antenna-specific expression of “antennal IRs” seems to 
be evolutionary conserved among insects. Moreover, a few 
orthologues of insect “antennal IRs” have been also detected 
in other protostomes. Some orthologues of insect “antennal 

IRs” in other Protostomia, such as snails and lobsters, are 
expressed in olfactory organs as well [75]. Analyzing the 
expression pattern of “antennal IRs” in several insect species 
revealed that these receptors are expressed in OSNs located 
in sensilla coeloconica. They are mostly absent from basi-
conic and trichoid sensilla as well as from OSNs expressing 
Orco [41, 290] and each “antennal IR” type seems to be 
expressed in only a smaller subset of the coeloconic OSNs. 
However, some IR-positive OSNs express more than one 
“antennal IR” type [41]. Interestingly, some of the “anten-
nal IRs” appear to function also in other sensory systems. 
In adult Drosophila flies, IR93a and IR40a are co-expressed 
in neurons of the third antennal segment surrounding the 
so-called sacculus of the antenna [41] and serve as dry-acti-
vated hygrosensors [292]. Together with another “antennal 
IR” type (IR21a), IR93a is also expressed in thermosensory 
dorsal organ cool cells in the head of D. melanogaster larvae 
and functions as a thermoreceptor [292, 293].

While the “antennal IRs” account for only a smaller frac-
tion of the IR repertoire in insects and other protostomes, the 
majority of the IRs belong to the second IR subgroup that 
has been largely expanded in dipterans, encompassing 48 
genes (including 9 pseudogenes) in D. melanogaster [75]. 
Yet, analyzing the genomes of diverse Drosophila and mos-
quito species, no obvious orthologous relationships were 
found for these IR types. Thus, these receptors are largely 
species-specific forming a number of species-specific clades 
in phylogenetic trees. In addition, they share low amino acid 
sequence identity (as little as 8.5%) with other IRs in either 
the same or different species. Therefore, these IRs have 
been termed “divergent IRs” [75]. In marked contrast to the 
“antennal IRs”, “divergent IRs” appear to be absent from 
antennae [41]. However, expression of some “divergent IRs” 
in insects has been reported for gustatory organs (e.g., the 
labellum), indicating a role for gustation [75].

Besides “antennal IRs” and “divergent IRs”, a third IR 
group comprises the receptors IR25a and IR8a that are con-
served among protostomes (IR25a) and insects (IR8a). In 
contrast to other insect IRs, IR25a and IR8a have retained 
an amino-terminal domain characteristic for iGluRs [41, 75]. 
IR25a and IR8a are broadly expressed in coeloconic OSNs 
of the antenna along with “antennal IRs”. Although it can-
not be excluded that IR25a and IR8a bind to given chemical 
ligands, their co-expression with “antennal IR” types sug-
gests that they might acts as co-receptors, analogous to the 
heteromeric assembly of ligand-specific ORs with Orco [41, 
75] (Fig. 2). This concept was supported by the observation 
that null mutations of IR8a and IR25a abolished odorant-
evoked responses of IR-expressing OSNs in flies. Moreo-
ver, heterologous expression experiments with IR84 and 
IR8a demonstrated that co-expression of IR8a was required 
for responsiveness to the IR84 ligand phenylacetaldehyde 
[288]. Reconstitution of functional IRs in Xenopus oocytes 
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has allowed stoichiometric analysis of IR complexes in the 
plasma membrane. These studies indicated that the ligand-
specific receptor and the co-receptor in fact form heterotetra-
meric complexes [42, 288]. Thus, the molecular architecture 
of functional IRs comprising a specific ligand-detecting IR 
and a co-receptor (IR25a or IR8a) is reminiscent of the OR/
Orco complex [288, 294]. It is still elusive how the IR/co-
receptor complex may recognize the ligand; however, recent 
results are consistent with a mechanism of ligand binding 
similar to that described for iGluRs [42].

The finding that clear orthologues for many “antennal 
IRs” exist in most or even all insect species suggests that 
the ligands for IRs are in general essential chemosensory 
cues for insects [42]. Determining the odor response pro-
files of IR-expressing coeloconic OSNs by electrophysi-
ological recordings identified multiple agonists, the vast 
majority belonging to two chemical classes, amines and 
carboxylic acids [287, 295]. The ligand spectrum of IR-
expressing OSNs appears to be largely complementary to 
that of OR-expressing OSNs, suggesting that insects are 
endowed with two distinct but complementary olfactory 
subsystems encompassing OSNs that either express IRs or 
ORs [295]. More recent studies imply that some IR subtypes 
are involved in the detection of food-derived odors [296] 
whereas others are tuned to polyamines, which seems to be 
important for the development of offspring [297].

Concluding remarks

The progress towards an understanding of how insects 
perceive the composition of chemical compounds in their 
surrounding is remarkable. On the level of odor recogni-
tion and discrimination, we now know that insects have 
co-opted two main receptor families, the IRs and the 
ORs. The later turned out to be a unique family of 7-TMD 
proteins that are not classical GPCRs but rather have 
an inverse membrane topology. They form heteromeric 
complexes composed of a ligand-tuning receptor subunit 
together with the well-conserved co-receptor subunit Orco 
and are supposed to mediate ionotropic and metabotropic 
signaling processes. However, many questions remain to 
be answered, including the molecular features of the recep-
tor protein that determine the ligand specificity and the 
molecular processes that contribute to the striking sensi-
tivity of the insect olfactory system. In this context, novel 
groundbreaking gene editing techniques (such as CRISPR/
Cas9) might help to unravel the functional relevance(s) 
as well as the molecular properties of ORs and other pro-
teins involved in olfactory signaling. Looking ahead, the 
molecular principles of insect olfaction remain exciting 
areas for future research since more detailed insight into 
the mechanisms underlying the sensing of chemical sig-
nals will not only contribute to a better understanding of 

insect behavior and physiology but may also open new 
avenues for the development of more specific and sustain-
able approaches to control pest insects.
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