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Abstract

(Z)-4-undecenal (Z4-11Al) is the volatile pheromone produced by females of the vinegar fly Drosophila melanogaster. Female
flies emit Z4-11Al for species-specific communication and mate-finding. A sensory panel finds that synthetic Z4-11Al has a
characteristic flavour, which can be perceived even at the small amounts produced by a single female fly. Since only females
produce Z4-11Al, and not males, we can reliably distinguish between single D. melanogaster males and females, according to
their scent. Females release Z4-11Al at 2.4 ng/h and we readily sense 1 ng synthetic Z4-11Al in a glass of wine (0.03 nmol/L),
while a tenfold concentration is perceived as a loud off-flavour. This corroborates the observation that a glass of wine is spoilt by a
single D. melanogaster fly falling into it, which we here show is caused by Z4-11Al The biological role of Z4-11Al or

structurally related aldehydes in humans and the basis for this semiochemical convergence remains yet unclear.
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Introduction

All living things communicate with chemicals. Unlike sounds
or sights, semiochemicals interconnect species across the
kingdoms, and enable information exchange between ani-
mals, plants and microorganisms (Schultz and Appel 2004).
A fascinating, recurrent observation is that the same com-
pound may be bioactive in different species and context.
Evolutionary convergence may result from the widespread
occurrence or even physico-chemical properties facilitating
information transmission, but is first of all thought to reflect
the biological significance of chemicals, including the under-
lying biochemical pathways and precursors.
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Citrus fruit is a preferred oviposition substrate for the vin-
egar fly Drosophila melanogaster (Dweck et al. 2013) provid-
ed that yeast is present (Becher et al. 2012). Citrus peel and
brewer’s yeast both produce linalool (Carrau et al. 2005;
Chisholm et al. 2003), which the flies perceive via several
odorant receptors (Ors), including DmelOr69a (Lebreton
et al. 2017; Miinch and Galizia 2016).

Linalool, commonly found in the headspace of foliage,
flowers and fruit, is bioactive in many animals. Plant-
produced linalool enhances mate-finding in several phytoph-
agous insects, while other species release linalool as a sex
pheromone component (Aldrich et al. 1986; Hefetz et al.
1979; Leal et al. 1993; Yang et al. 2004). Herbivory, on the
other hand, can upregulate linalool production in plants,
which may protect against further infestation (Mithofer and
Boland 2012). The (R) and (S) enantiomers of linalool differ-
entially attract pollinators and herbivores, for feeding and ovi-
position (Raguso 2016; Reisenman et al. 2010; Saveer et al.
2012), and enantiomeric changes during phenological devel-
opment modulate our perception of flower aroma
(Pragadheesh et al. 2017). In mammals, linalool induces
psychopharmalogical effects via glutamate receptors
(Elisabetsky et al. 1995; Nakamura et al. 2009), perception
via Ors produces a sweet, floral note and makes a prominent
contribution to the bouquet of flowers, fruit and wine, where
both grape and yeast are a source of linalool (Carrau et al.
2005; Lewinsohn et al. 2001; Swiegers et al. 2005).
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The response to food and mate olfactory cues is strongly
interconnected in Drosophila (Das et al. 2017; Gorter et al.
2016; Lebreton et al. 2015) and DmelOr69a is also tuned to
the newly identified female pheromone (Z)-4-undecenal (Z4-
11Al), in addition to food odorants (Lebreton et al. 2017).
Curiously, Z4-11Al is also found in citrus essential oil
(Chisholm et al. 2003). Unsaturated aldehydes are prominent
constituents of a range of food aromas, including fruit, wine,
meat and fish (e.g. Cullere et al. 2007; Perez-Cacho and
Rouseff 2008; Shi et al. 2013; Varlet et al. 2006; Yang et al.
2008). Moreover, Z4-11Al is an anal gland volatile in the
rabbit (Goodrich et al. 1978).

While collecting volatiles from D. melanogaster flies, we
discovered that we can reliably distinguish single male from
female flies by their scent, which is strongly reminiscent of
synthetic Z4-11Al. We then employed a professional sensory
panel to verify whether we can indeed discern single flies, and
whether the newly discovered pheromone Z4-11Al contrib-
utes to the scent of the female fly.

Methods and Materials

Chemicals Isomeric and chemical purity of synthetic Z4-11Al
were 98.6% and > 99.9%, respectively, according to gas chro-
matography coupled to mass spectrometry (6890 GC and
5975 MS, Agilent Technologies, Santa Clara, CA, USA).
Ethanol (redistilled, >99.9% purity; Merck, Darmstadt,
Germany) was used as solvent.

Sensory Evaluation Eight members (comprised of two women
and six men) of the sensory panel for organoleptic tests for the
wine-growing area of Baden evaluated the odor of
D. melanogaster and synthetic Z4-11Al. Members of this pan-
el have been trained and selected for the official quality as-
sessment of wines produced in Baden, at the Federal Institute
for Viticulture, Freiburg, Germany. Each test comprised three
glasses, control and two treatments, which were presented in
random order. The panel was asked to score odor intensity,
ranging from 1 (weak, silent) to 9 (strong, loud) and to com-
ment on odor quality. The local human subjects committee
approved sensory evaluation of Z4-11Al by sniffing. The first
test compared the odor from single male and female flies. Flies
were kept during 5 min in empty wine tasting glasses (215 ml)
and were released shortly before tests. The second test com-
pared a glass impregnated with fly odor and Z4-11Al1 (10 ng in
10 pl ethanol), which was applied to an empty glass, the
solvent was allowed to evaporate during 2 min. Next, 10 ng
Z4-11Al or a female fly were added to a glass filled with either
water or white wine (dry Pinot blanc, Freiburg 2013,
Staatsweinkellerei Freiburg). The fly was removed after
5 min, prior to testing. Finally, 1 or 5 ng Z4-11Al was added
to wine.
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Statistical Analysis Odor panel data were analyzed using one-
tailed analysis of variance (ANOVA) followed by a Tukey
test. Normality was tested using Shapiro-Wilk and homosce-
dasticity was tested using Levene’s test. All analyses were
carried out using SPSS v. 20 (IBM Corp., New York).

Results

D. melanogaster females (Fig. 1) produce a distinctive
scent. The sensory panel found the odor of single female
flies to be stronger and qualitatively clearly different from
male flies (Fig. 2a).

Chemical analysis has shown earlier that Z4-11Al and its
precursor, the cuticular hydrocarbon (Z,Z)-7,11-heptacosadiene,
are produced by female flies, not by males (Billeter et al. 2009;
Lebreton et al. 2017). Our panel tests established that synthetic
Z4-11Al has a distinctive odor (Fig. 2b). Moreover, a female fly
and 10 ng Z4-11Al were found to be similar, with respect to
odor quality and intensity, when presented in an empty glass, in
water or wine (Fig. 2c—e). Since 10 ng Z4-11Al was assessed as
slightly louder than the odor of a fly, we compared Z4-11Al at
1 ng and 5 ng, showing that as little as 1 ng Z4-11Al in a wine
glass (corresponding to ca. 5 ng/L or 0.03 nmol/L at the time of
application) was clearly perceptible (Fig. 2f). Even at small
amounts, Z4-11Al was perceived as an unpleasant off-flavour.

The detection threshold for Z4-11Al is apparently similar in
flies and men, since we clearly sense Z4-11Al released from a
single fly (Fig. 2a). Chemical analyses found that
D. melanogaster females released Z4-11Al at a rate of
2.4 ng/h and solvent extracts of fly cuticula contained 0.3 ng
Z4-11Al/female (Lebreton et al. 2017).

Discussion

Sensory evaluation confirmed that we sensitively smell Z4-
11Al, the female-produced pheromone of the fruit fly
D. melanogaster (Lebreton et al. 2017) and that we reliably
distinguish single female from male flies. This supports the ob-
servation that one fly spoils a glass of wine, after falling into it -
provided it is of the female sex. Other fly volatiles may contrib-
ute to our perception of fly odor. However, Z4-11Al is the most
abundant compound, which is released by females only, other
volatiles are found in both sexes (Lebreton et al. 2017).

A straightforward explanation for the convergent percep-
tion of Z4-11Al is, however, not at hand. The occurrence of
ZA4-11Al in nature is incompletely known and its possible role
in humans remains unclear. Z4-11Al may merely be reminis-
cent of other food aldehydes, or it might avert ingestion of fruit
that is infested with vinegar flies, which can be contaminated
with microbes vectored by flies (Alegbeleye et al. 2018).
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Fig. 1 Fruit fly D. melanogaster
female with exposed ovipositor
on blueberry (Photo by Cyrus
Mahmoudi)

A range of mammalian Ors is responsive to aldehydes (e.g.
Benbernou et al. 2007; Saito et al. 2009; Nara et al. 2011),
including human Orlal and Or2wl (Geithe et al. 2017a,b).
ZA-11Al is produced in the anal gland of male wild rabbits and
may be involved in territorial marking; the aldehyde was found
to affect the heart rate when perceived by other male rabbits
(Goodrich et al. 1978). The positional isomer (£)-2-undecenal
is a bovid body odor (Gikonyo et al. 2002) and olfactory sensory
neurons of ticks tuned to aldehydes afford indirect evidence for
aldehyes as vertebrate signals (Steullet and Guerin 1994). A
characteristic scent which is reminiscent of tangerine emanates
from colonies of crested auklet, a monogamous seabird. Two

unsaturated aldehydes, the chain-shortened analog (Z)-4-decenal
(Z4-10Al) and (Z)-2-decenal are main odor-active constitutents.
In crested auklet, Z4-10Al likely plays a role as an ectoparasite
repellent and a signal of mate quality (Douglas et al. 2001;
Hagelin et al. 2003; Caro and Balthazart 2010).

Z4-11Al is also part of clementine aroma (Chisholm et al.
2003) and it may play a dual role as social signal and food cue,
not only in flies, but also in other animals. The olfactory sense
in animals plays a key role during habitat adaptation. Tuning
of Ors to habitat cues will create a bias for mate-finding sig-
nals that match or are structurally similar to habitat odorants
(Endler 1992). This idea yields a tentative scenario for the
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convergence of semiochemicals. Insects and other animals
feed on fruit, containing associated yeasts that facilitate diges-
tion of plant materials, provide nutrients and protection of
food from antagonistic microorganisms. Animal-produced
compounds sharing structural motifs may have secondarily
been adopted as mating signals, via established sensory chan-
nels dedicated to habitat and food odorants.

The olfactory system of Drosophila is conveniently acces-
sible to experimental investigation and current research ex-
tends beyond the Or ligand repertoire (Miinch and Galizia
2016) to neural circuits underlying odor-mediated behavior
(Kohl et al. 2013; Auer and Benton 2016; Seki et al. 2017),
chemical ecology (Depetris-Chauvin et al. 2015; Mansourian
and Stensmyr 2015) and phylogenetic diversification (Shiao
et al. 2015; Arguello et al. 2016; Ramasamy et al. 2016). A
future challenge is to extend functional, behavioral, ecological
and phylogenetic studies to include vertebrates, towards an
understanding of the chemical vocabulary that interconnects
us with other living things.
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